Suppr超能文献

药物代谢酶基因的全基因组测序与临床基因分型比较

Comparison of genome sequencing and clinical genotyping for pharmacogenes.

作者信息

Yang W, Wu G, Broeckel U, Smith C A, Turner V, Haidar C E, Wang S, Carter R, Karol S E, Neale G, Crews K R, Yang J J, Mullighan C G, Downing J R, Evans W E, Relling M V

机构信息

Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.

Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.

出版信息

Clin Pharmacol Ther. 2016 Oct;100(4):380-8. doi: 10.1002/cpt.411. Epub 2016 Aug 18.

Abstract

We compared whole exome sequencing (WES, n = 176 patients) and whole genome sequencing (WGS, n = 68) and clinical genotyping (DMET array-based approach) for interrogating 13 genes with Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines. We focused on 127 CPIC important variants: 103 single nucleotide variations (SNV), 21 insertion/deletions (Indel), HLA-B alleles, and two CYP2D6 structural variations. WES and WGS provided interrogation of nonoverlapping sets of 115 SNV/Indels with call rate >98%. Among 68 loci interrogated by both WES and DMET, 64 loci (94.1%, confidence interval [CI]: 85.6-98.4%) showed no discrepant genotyping calls. Among 66 loci interrogated by both WGS and DMET, 63 loci (95.5%, CI: 87.2-99.0%) showed no discrepant genotyping calls. In conclusion, even without optimization to interrogate pharmacogenetic variants, WES and WGS displayed potential to provide reliable interrogation of most pharmacogenes and further validation of genome sequencing in a clinical lab setting is warranted.

摘要

我们比较了全外显子组测序(WES,176例患者)、全基因组测序(WGS,68例)以及基于临床药物基因组学实施联盟(CPIC)指南对13个基因进行检测的临床基因分型(基于DMET芯片的方法)。我们重点关注了127个CPIC重要变异:103个单核苷酸变异(SNV)、21个插入/缺失(Indel)、HLA - B等位基因以及两个CYP2D6结构变异。WES和WGS对115个SNV/Indel的非重叠集合进行检测,检出率>98%。在WES和DMET都检测的68个位点中,64个位点(94.1%,置信区间[CI]:85.6 - 98.4%)的基因分型结果无差异。在WGS和DMET都检测的66个位点中,63个位点(95.5%,CI:87.2 - 99.0%)的基因分型结果无差异。总之,即使未针对药物遗传变异检测进行优化,WES和WGS仍显示出对大多数药物基因进行可靠检测的潜力,在临床实验室环境中对基因组测序进行进一步验证是有必要的。

相似文献

1
Comparison of genome sequencing and clinical genotyping for pharmacogenes.
Clin Pharmacol Ther. 2016 Oct;100(4):380-8. doi: 10.1002/cpt.411. Epub 2016 Aug 18.
2
Archived neonatal dried blood spot samples can be used for accurate whole genome and exome-targeted next-generation sequencing.
Mol Genet Metab. 2013 Sep-Oct;110(1-2):65-72. doi: 10.1016/j.ymgme.2013.06.004. Epub 2013 Jun 13.
3
Calling Star Alleles With Stargazer in 28 Pharmacogenes With Whole Genome Sequences.
Clin Pharmacol Ther. 2019 Dec;106(6):1328-1337. doi: 10.1002/cpt.1552. Epub 2019 Jul 26.
4
Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants.
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5473-8. doi: 10.1073/pnas.1418631112. Epub 2015 Mar 31.
5
Computational pharmacogenotype extraction from clinical next-generation sequencing.
Front Oncol. 2023 Jul 4;13:1199741. doi: 10.3389/fonc.2023.1199741. eCollection 2023.
6
Reducing INDEL calling errors in whole genome and exome sequencing data.
Genome Med. 2014 Oct 28;6(10):89. doi: 10.1186/s13073-014-0089-z. eCollection 2014.
7
Critical points for an accurate human genome analysis.
Hum Mutat. 2017 Aug;38(8):912-921. doi: 10.1002/humu.23238. Epub 2017 Jun 16.
9
Analytical Validation of a Computational Method for Pharmacogenetic Genotyping from Clinical Whole Exome Sequencing.
J Mol Diagn. 2022 Jun;24(6):576-585. doi: 10.1016/j.jmoldx.2022.03.008. Epub 2022 Apr 20.
10
Comparison of Exome and Genome Sequencing Technologies for the Complete Capture of Protein-Coding Regions.
Hum Mutat. 2015 Aug;36(8):815-22. doi: 10.1002/humu.22813. Epub 2015 Jun 11.

引用本文的文献

2
Comparing the clinical utility of pharmacogenomic genotyping and next generation sequencing in a military health system adult medicine clinic.
Pharmacogenomics. 2024;25(16-18):637-645. doi: 10.1080/14622416.2025.2466413. Epub 2025 Feb 21.
3
Applications of genome sequencing as a single platform for clinical constitutional genetic testing.
Genet Med Open. 2024 Mar 20;2:101840. doi: 10.1016/j.gimo.2024.101840. eCollection 2024.
4
Current status of the analytical validation of next generation sequencing applications for pharmacogenetic profiling.
Mol Biol Rep. 2023 Nov;50(11):9587-9599. doi: 10.1007/s11033-023-08748-z. Epub 2023 Oct 3.
5
Translating pharmacogenomic sequencing data into drug response predictions-How to interpret variants of unknown significance.
Br J Clin Pharmacol. 2025 Feb;91(2):252-263. doi: 10.1111/bcp.15915. Epub 2023 Oct 16.
6
Comparison of variants in TPMT and NUDT15 between sequencing and genotyping methods in a multistate pediatric institution.
Clin Transl Sci. 2023 Aug;16(8):1352-1358. doi: 10.1111/cts.13539. Epub 2023 Jul 6.
7
Advancing Pharmacogenomics from Single-Gene to Preemptive Testing.
Annu Rev Genomics Hum Genet. 2022 Aug 31;23:449-473. doi: 10.1146/annurev-genom-111621-102737. Epub 2022 May 10.
8
Clinical pharmacogenetic analysis in 5,001 individuals with diagnostic Exome Sequencing data.
NPJ Genom Med. 2022 Feb 18;7(1):12. doi: 10.1038/s41525-022-00283-3.
9
Identification of CYP2D6 Haplotypes that Interfere with Commonly Used Assays for Copy Number Variation Characterization.
J Mol Diagn. 2021 May;23(5):577-588. doi: 10.1016/j.jmoldx.2021.01.013. Epub 2021 Feb 22.
10
Technologies for Pharmacogenomics: A Review.
Genes (Basel). 2020 Dec 4;11(12):1456. doi: 10.3390/genes11121456.

本文引用的文献

2
PGRNseq: a targeted capture sequencing panel for pharmacogenetic research and implementation.
Pharmacogenet Genomics. 2016 Apr;26(4):161-168. doi: 10.1097/FPC.0000000000000202.
3
A comparison of DMET Plus microarray and genome-wide technologies by assessing population substructure.
Pharmacogenet Genomics. 2016 Apr;26(4):147-153. doi: 10.1097/FPC.0000000000000200.
4
CYP2D6 copy number distribution in the US population.
Pharmacogenet Genomics. 2016 Feb;26(2):96-9. doi: 10.1097/FPC.0000000000000188.
5
Pharmacogenomics in the clinic.
Nature. 2015 Oct 15;526(7573):343-50. doi: 10.1038/nature15817.
6
Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for UGT1A1 and Atazanavir Prescribing.
Clin Pharmacol Ther. 2016 Apr;99(4):363-9. doi: 10.1002/cpt.269. Epub 2015 Nov 9.
7
Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes.
Nat Biotechnol. 2015 Nov;33(11):1152-8. doi: 10.1038/nbt.3344.
9
Cypiripi: exact genotyping of CYP2D6 using high-throughput sequencing data.
Bioinformatics. 2015 Jun 15;31(12):i27-34. doi: 10.1093/bioinformatics/btv232.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验