Witczak Justyna, Taylor Peter, Chai Jason, Amphlett Bethan, Soukias Jean-Marc, Das Gautam, Tennant Brian P, Geen John, Okosieme Onyebuchi E
Centre for Endocrine and Diabetes Science, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, University Hospital Wales, Cardiff, CF14 4XN UK.
Endocrinology and Diabetes Department, Prince Charles Hospital, Cwm Taf Health Board, Gurnos Estate Merthyr Tydfil, CF47 9DT UK.
Thyroid Res. 2016 May 25;9:4. doi: 10.1186/s13044-016-0033-y. eCollection 2016.
Although the majority of thyroid nodules are benign the process of excluding malignancy is challenging and sometimes involves unnecessary surgical procedures. We explored the development of a predictive model for malignancy in thyroid nodules by integrating a combination of simple demographic, biochemical, and ultrasound characteristics.
Retrospective case-record review. We reviewed records of patients with thyroid nodules referred to our institution from 2004 to 2011 (n = 536; female 84 %, mean age 51 years). All malignancy was proven histologically while benign disease was either confirmed histologically, or on cytology with minimum 36-month observation period. We focused on the following predictors: age, sex, smoking status, thyroid hormones (FT4 and TSH) and nodule characteristics on ultrasound. Variables were included in a multivariate logistic regression and bootstrap analyses were used to confirm results.
Independent predictors of malignancy in the fully adjusted model were TSH (OR 1.53, 95 % CI 1.10, 2.12, p = 0.01), male gender (OR 3.45, 95 % CI 1.33, 8.92, p = 0.01), microcalcifications (OR 6.32, 95 % CI 2.82, 14.1, p < 0.001), and irregular nodule margins (OR 5.45, 95 % CI 1.61, 18.6, p = 0.006) Bootstrap analyses strengthened these associations and a parsimonious analysis consisting of these variables and age-group demonstrated an area under the curve of 0.77. A predictive score was sensitive (86.9 %) at low scores and highly specific (94.87 %) at higher scores for distinguishing benign from malignant disease.
A predictive model for malignancy using a combination of clinical, biochemical, and radiological characteristics may support clinicians in reducing unnecessary invasive procedures in patients with thyroid nodules.
尽管大多数甲状腺结节是良性的,但排除恶性病变的过程具有挑战性,有时还涉及不必要的外科手术。我们通过整合简单的人口统计学、生化和超声特征,探索了甲状腺结节恶性病变预测模型的开发。
回顾性病例记录审查。我们回顾了2004年至2011年转诊至我院的甲状腺结节患者的记录(n = 536;女性84%,平均年龄51岁)。所有恶性病变均经组织学证实,而良性疾病则通过组织学或细胞学确诊,并至少观察36个月。我们重点关注以下预测因素:年龄、性别、吸烟状况、甲状腺激素(FT4和TSH)以及超声检查的结节特征。将变量纳入多因素逻辑回归分析,并采用自助法分析来确认结果。
在完全调整模型中,恶性病变的独立预测因素为TSH(比值比1.53,95%置信区间1.10,2.12,p = 0.01)、男性(比值比3.45,95%置信区间1.33,8.92,p = 0.01)、微钙化(比值比6.32,95%置信区间2.82,14.1,p < 0.001)和结节边缘不规则(比值比5.45,95%置信区间1.61,18.6,p = 0.006)。自助法分析强化了这些关联,由这些变量和年龄组组成的简约分析显示曲线下面积为0.77。预测评分在低分时有较高敏感性(86.9%),在高分时具有高度特异性(94.87%),可用于区分良性和恶性疾病。
使用临床、生化和放射学特征相结合的恶性病变预测模型,可能有助于临床医生减少甲状腺结节患者不必要的侵入性检查。