Suppr超能文献

利用极化合成孔径雷达图像检测土堤异常的先进无监督分类方法

Advanced Unsupervised Classification Methods to Detect Anomalies on Earthen Levees Using Polarimetric SAR Imagery.

作者信息

Marapareddy Ramakalavathi, Aanstoos James V, Younan Nicolas H

机构信息

Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 39759, USA.

Geosystems Research Institute, Mississippi State University, Mississippi State, MS 39759, USA.

出版信息

Sensors (Basel). 2016 Jun 16;16(6):898. doi: 10.3390/s16060898.

Abstract

Fully polarimetric Synthetic Aperture Radar (polSAR) data analysis has wide applications for terrain and ground cover classification. The dynamics of surface and subsurface water events can lead to slope instability resulting in slough slides on earthen levees. Early detection of these anomalies by a remote sensing approach could save time versus direct assessment. We used L-band Synthetic Aperture Radar (SAR) to screen levees for anomalies. SAR technology, due to its high spatial resolution and soil penetration capability, is a good choice for identifying problematic areas on earthen levees. Using the parameters entropy (H), anisotropy (A), alpha (α), and eigenvalues (λ, λ₁, λ₂, and λ₃), we implemented several unsupervised classification algorithms for the identification of anomalies on the levee. The classification techniques applied are H/α, H/A, A/α, Wishart H/α, Wishart H/A/α, and H/α/λ classification algorithms. In this work, the effectiveness of the algorithms was demonstrated using quad-polarimetric L-band SAR imagery from the NASA Jet Propulsion Laboratory's (JPL's) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area is a section of the lower Mississippi River valley in the Southern USA, where earthen flood control levees are maintained by the US Army Corps of Engineers.

摘要

全极化合成孔径雷达(polSAR)数据分析在地形和地表覆盖分类方面有着广泛应用。地表水和地下水事件的动态变化可能导致边坡失稳,进而引发土堤的坍塌滑坡。相较于直接评估,通过遥感方法早期检测这些异常情况可节省时间。我们使用L波段合成孔径雷达(SAR)对堤坝进行异常筛查。由于SAR技术具有高空间分辨率和土壤穿透能力,它是识别土堤问题区域的理想选择。利用熵(H)、各向异性(A)、阿尔法(α)和特征值(λ、λ₁、λ₂和λ₃)等参数,我们实施了几种无监督分类算法来识别堤坝上的异常情况。所应用的分类技术包括H/α、H/A、A/α、Wishart H/α、Wishart H/A/α和H/α/λ分类算法。在这项工作中,利用美国国家航空航天局喷气推进实验室(JPL)的无人飞行器合成孔径雷达(UAVSAR)获取的四极化L波段SAR图像,证明了这些算法的有效性。研究区域位于美国南部密西西比河下游河谷的一段,那里的土防洪堤由美国陆军工程兵团维护。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c61a/4934324/c86a381749b4/sensors-16-00898-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验