Pors Anders, Ding Fei, Chen Yiting, Radko Ilya P, Bozhevolnyi Sergey I
SDU Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
Sci Rep. 2016 Jun 22;6:28448. doi: 10.1038/srep28448.
Random-phase metasurfaces, in which the constituents scatter light with random phases, have the property that an incident plane wave will diffusely scatter, hereby leading to a complex far-field response that is most suitably described by statistical means. In this work, we present and exemplify the statistical description of the far-field response, particularly highlighting how the response for polarised and unpolarised light might be alike or different depending on the correlation of scattering phases for two orthogonal polarisations. By utilizing gap plasmon-based metasurfaces, consisting of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light, with statistics obeying the theoretical predictions. We foresee the use of random-phase metasurfaces for camouflage applications and as high-quality reference structures in dark-field microscopy, while the control of the statistics for polarised and unpolarised light might find usage in security applications. Finally, by incorporating a certain correlation between scattering by neighbouring metasurface constituents new types of functionalities can be realised, such as a Lambertian reflector.
随机相位超表面,其组成部分以随机相位散射光,具有这样的特性:入射平面波会发生漫散射,从而导致一种复杂的远场响应,这种响应最适合用统计方法来描述。在这项工作中,我们展示并举例说明了远场响应的统计描述,特别强调了偏振光和非偏振光的响应如何根据两个正交偏振的散射相位相关性而相似或不同。通过利用基于间隙等离子体的超表面,其由覆盖有亚波长薄玻璃间隔层的光学厚金膜和金纳米砖阵列组成,我们在800纳米波长下设计并实现了随机相位超表面。对制备样品的光学表征令人信服地证明了反射光的漫散射,其统计数据符合理论预测。我们预见随机相位超表面可用于伪装应用以及作为暗场显微镜中的高质量参考结构,而对偏振光和非偏振光统计数据的控制可能在安全应用中得到应用。最后,通过在相邻超表面组成部分的散射之间引入一定的相关性,可以实现新型功能,例如朗伯反射器。