Kai Takeshi, Yokoya Akinari, Ukai Masatoshi, Fujii Kentaro, Watanabe Ritsuko
a Nuclear Science and Engineering Center , Japan Atomic Energy Agency , Tokai , Naka , Ibaraki , Japan.
b Quantum Beam Science Center , Japan Atomic Energy Agency , Tokai , Naka , Ibaraki , Japan.
Int J Radiat Biol. 2016 Nov;92(11):654-659. doi: 10.1080/09553002.2016.1195933. Epub 2016 Jun 22.
To simulate the deceleration processes of secondary electrons produced by a high-energy Auger electron in water, and particularly to focus on the spatial and temporal distributions of the secondary electron and the collision events (e.g. ionization, electronic excitation, and dissociative electron attachment) that are involved in the multiplication of lesions at sites of DNA damage.
We developed a dynamic Monte Carlo code that considers the Coulombic force between an ejected electron and its parent cation produced by the Auger electron in water. Thus our code can simulate some return electrons to the parent cations. Using the code, we calculated to within the order of femtoseconds the temporal evolution of collision events, the mean energy, and the mean traveling distance (including its spatial probability distribution) of the electron at an ejected energy of 20 eV.
Some of the decelerating electrons in water in the Coulombic field were attracted to the ionized atoms (cations) by the Coulombic force within hundreds of femtoseconds, although the force did not significantly enhance the number of ionization, electronic excitation, and dissociative electron attachment collision events leading to water radiolysis.
The secondary electrons are decelerated in water by the Coulombic force and recombined to the ionized atoms (cations). Furthermore, the some return electrons might be prehydrated in water layer near the parent cation in DNA if the electrons might be emitted from the DNA. The prehydrated electron originated from the return electron might play a significant role in inducing DNA damage.
模拟高能俄歇电子在水中产生的二次电子的减速过程,尤其关注二次电子的时空分布以及DNA损伤部位损伤增殖过程中涉及的碰撞事件(如电离、电子激发和解离电子附着)。
我们开发了一个动态蒙特卡罗代码,该代码考虑了水中俄歇电子发射出的电子与其母体阳离子之间的库仑力。因此,我们的代码可以模拟一些返回母体阳离子的电子。使用该代码,我们计算了在飞秒量级内,能量为20 eV的发射电子的碰撞事件的时间演化、平均能量和平均行进距离(包括其空间概率分布)。
在库仑场中,水中一些减速电子在数百飞秒内被库仑力吸引到电离原子(阳离子)上,尽管该力并未显著增加导致水辐射分解的电离、电子激发和解离电子附着碰撞事件的数量。
二次电子在水中被库仑力减速并与电离原子(阳离子)重新结合。此外,如果电子从DNA发射,一些返回电子可能会在DNA中母体阳离子附近的水层中预水化。源自返回电子的预水化电子可能在诱导DNA损伤中起重要作用。