Suppr超能文献

小鼠视觉诱发平滑眼球运动的适应性加速

Adaptive Acceleration of Visually Evoked Smooth Eye Movements in Mice.

作者信息

Kodama Takashi, du Lac Sascha

机构信息

Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

出版信息

J Neurosci. 2016 Jun 22;36(25):6836-49. doi: 10.1523/JNEUROSCI.0067-16.2016.

Abstract

UNLABELLED

The optokinetic response (OKR) consists of smooth eye movements following global motion of the visual surround, which suppress image slip on the retina for visual acuity. The effective performance of the OKR is limited to rather slow and low-frequency visual stimuli, although it can be adaptably improved by cerebellum-dependent mechanisms. To better understand circuit mechanisms constraining OKR performance, we monitored how distinct kinematic features of the OKR change over the course of OKR adaptation, and found that eye acceleration at stimulus onset primarily limited OKR performance but could be dramatically potentiated by visual experience. Eye acceleration in the temporal-to-nasal direction depended more on the ipsilateral floccular complex of the cerebellum than did that in the nasal-to-temporal direction. Gaze-holding following the OKR was also modified in parallel with eye-acceleration potentiation. Optogenetic manipulation revealed that synchronous excitation and inhibition of floccular complex Purkinje cells could effectively accelerate eye movements in the nasotemporal and temporonasal directions, respectively. These results collectively delineate multiple motor pathways subserving distinct aspects of the OKR in mice and constrain hypotheses regarding cellular mechanisms of the cerebellum-dependent tuning of movement acceleration.

SIGNIFICANCE STATEMENT

Although visually evoked smooth eye movements, known as the optokinetic response (OKR), have been studied in various species for decades, circuit mechanisms of oculomotor control and adaptation remain elusive. In the present study, we assessed kinematics of the mouse OKR through the course of adaptation training. Our analyses revealed that eye acceleration at visual-stimulus onset primarily limited working velocity and frequency range of the OKR, yet could be dramatically potentiated during OKR adaptation. Potentiation of eye acceleration exhibited different properties between the nasotemporal and temporonasal OKRs, indicating distinct visuomotor circuits underlying the two. Lesions and optogenetic manipulation of the cerebellum provide constraints on neural circuits mediating visually driven eye acceleration and its adaptation.

摘要

未标注

视动反应(OKR)由视觉环境整体运动后的平滑眼球运动组成,其可抑制视网膜上的图像滑动以提高视敏度。尽管OKR的有效表现限于相当缓慢和低频的视觉刺激,但它可通过依赖小脑的机制适应性改善。为更好地理解限制OKR表现的神经回路机制,我们监测了OKR适应过程中OKR不同运动学特征的变化,发现刺激开始时的眼球加速度主要限制了OKR的表现,但可通过视觉经验显著增强。与鼻颞方向相比,颞鼻方向的眼球加速度更多地依赖于小脑的同侧绒球复合体。OKR后的注视保持也与眼球加速度增强同时发生改变。光遗传学操作显示,同步兴奋和抑制绒球复合体浦肯野细胞可分别有效加速鼻颞和颞鼻方向的眼球运动。这些结果共同描绘了小鼠OKR不同方面的多条运动通路,并限制了关于小脑依赖性运动加速度调节细胞机制的假说。

意义声明

尽管视觉诱发的平滑眼球运动,即视动反应(OKR),已在各种物种中研究了数十年,但动眼神经控制和适应的神经回路机制仍然难以捉摸。在本研究中,我们在适应训练过程中评估了小鼠OKR的运动学。我们的分析表明,视觉刺激开始时的眼球加速度主要限制了OKR的工作速度和频率范围,但在OKR适应过程中可显著增强。鼻颞和颞鼻OKR之间眼球加速度的增强表现出不同的特性,表明两者背后存在不同的视觉运动回路。小脑的损伤和光遗传学操作对介导视觉驱动的眼球加速度及其适应的神经回路提供了限制。

相似文献

1
Adaptive Acceleration of Visually Evoked Smooth Eye Movements in Mice.
J Neurosci. 2016 Jun 22;36(25):6836-49. doi: 10.1523/JNEUROSCI.0067-16.2016.
2
Non-linear eye movements during visual-vestibular interaction under body oscillation with step-mode lateral linear acceleration.
Exp Brain Res. 2005 Feb;161(2):243-54. doi: 10.1007/s00221-004-2063-2. Epub 2004 Oct 22.
3
Motor dynamics encoding in cat cerebellar flocculus middle zone during optokinetic eye movements.
J Neurophysiol. 1999 Nov;82(5):2235-48. doi: 10.1152/jn.1999.82.5.2235.
6
Normal and adapted visuooculomotor reflexes in goldfish.
J Neurophysiol. 1997 Mar;77(3):1099-118. doi: 10.1152/jn.1997.77.3.1099.
7
Role of granule-cell transmission in memory trace of cerebellum-dependent optokinetic motor learning.
Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5373-8. doi: 10.1073/pnas.1402546111. Epub 2014 Mar 24.
9
Initiation of the optokinetic response (OKR) in mice.
J Vis. 2010 Jan 29;10(1):13.1-17. doi: 10.1167/10.1.13.

引用本文的文献

1
Temporally-segregated dual functions for Gfi1 in the development of retinal direction-selectivity.
bioRxiv. 2025 Jun 6:2025.06.03.657700. doi: 10.1101/2025.06.03.657700.
4
Purkinje cell microzones mediate distinct kinematics of a single movement.
Nat Commun. 2023 Jul 19;14(1):4358. doi: 10.1038/s41467-023-40111-5.
6
The transcription factor Tbx5 regulates direction-selective retinal ganglion cell development and image stabilization.
Curr Biol. 2022 Oct 10;32(19):4286-4298.e5. doi: 10.1016/j.cub.2022.07.064. Epub 2022 Aug 22.
7
Impact of Purkinje Cell Simple Spike Synchrony on Signal Transmission from Flocculus.
Cerebellum. 2022 Dec;21(6):879-904. doi: 10.1007/s12311-021-01332-w. Epub 2021 Oct 19.
8
Population calcium responses of Purkinje cells in the oculomotor cerebellum driven by nonvisual input.
J Neurophysiol. 2021 Oct 1;126(4):1391-1402. doi: 10.1152/jn.00715.2020. Epub 2021 Aug 4.
9
Development of the vertebrate retinal direction-selective circuit.
Dev Biol. 2021 Sep;477:273-283. doi: 10.1016/j.ydbio.2021.06.004. Epub 2021 Jun 10.
10
Influence of Aging on the Retina and Visual Motion Processing for Optokinetic Responses in Mice.
Front Neurosci. 2020 Dec 1;14:586013. doi: 10.3389/fnins.2020.586013. eCollection 2020.

本文引用的文献

1
Encoding of action by the Purkinje cells of the cerebellum.
Nature. 2015 Oct 15;526(7573):439-42. doi: 10.1038/nature15693.
2
Cell type-specific manipulation with GFP-dependent Cre recombinase.
Nat Neurosci. 2015 Sep;18(9):1334-41. doi: 10.1038/nn.4081. Epub 2015 Aug 10.
3
Links Between Single-Trial Changes and Learning Rate in Eyelid Conditioning.
Cerebellum. 2016 Apr;15(2):112-21. doi: 10.1007/s12311-015-0690-8.
4
Mechanics of mouse ocular motor plant quantified by optogenetic techniques.
J Neurophysiol. 2015 Sep;114(3):1455-67. doi: 10.1152/jn.00328.2015. Epub 2015 Jun 24.
5
A structural and genotypic scaffold underlying temporal integration.
J Neurosci. 2015 May 20;35(20):7903-20. doi: 10.1523/JNEUROSCI.3045-14.2015.
6
The types of retinal ganglion cells: current status and implications for neuronal classification.
Annu Rev Neurosci. 2015 Jul 8;38:221-46. doi: 10.1146/annurev-neuro-071714-034120. Epub 2015 Apr 9.
7
Purkinje cell responses during visually and vestibularly driven smooth eye movements in mice.
Brain Behav. 2015 Mar;5(3):e00310. doi: 10.1002/brb3.310. Epub 2015 Jan 21.
9
Role of plasticity at different sites across the time course of cerebellar motor learning.
J Neurosci. 2014 May 21;34(21):7077-90. doi: 10.1523/JNEUROSCI.0017-14.2014.
10
Role of granule-cell transmission in memory trace of cerebellum-dependent optokinetic motor learning.
Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5373-8. doi: 10.1073/pnas.1402546111. Epub 2014 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验