Kodama Takashi, du Lac Sascha
Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
J Neurosci. 2016 Jun 22;36(25):6836-49. doi: 10.1523/JNEUROSCI.0067-16.2016.
The optokinetic response (OKR) consists of smooth eye movements following global motion of the visual surround, which suppress image slip on the retina for visual acuity. The effective performance of the OKR is limited to rather slow and low-frequency visual stimuli, although it can be adaptably improved by cerebellum-dependent mechanisms. To better understand circuit mechanisms constraining OKR performance, we monitored how distinct kinematic features of the OKR change over the course of OKR adaptation, and found that eye acceleration at stimulus onset primarily limited OKR performance but could be dramatically potentiated by visual experience. Eye acceleration in the temporal-to-nasal direction depended more on the ipsilateral floccular complex of the cerebellum than did that in the nasal-to-temporal direction. Gaze-holding following the OKR was also modified in parallel with eye-acceleration potentiation. Optogenetic manipulation revealed that synchronous excitation and inhibition of floccular complex Purkinje cells could effectively accelerate eye movements in the nasotemporal and temporonasal directions, respectively. These results collectively delineate multiple motor pathways subserving distinct aspects of the OKR in mice and constrain hypotheses regarding cellular mechanisms of the cerebellum-dependent tuning of movement acceleration.
Although visually evoked smooth eye movements, known as the optokinetic response (OKR), have been studied in various species for decades, circuit mechanisms of oculomotor control and adaptation remain elusive. In the present study, we assessed kinematics of the mouse OKR through the course of adaptation training. Our analyses revealed that eye acceleration at visual-stimulus onset primarily limited working velocity and frequency range of the OKR, yet could be dramatically potentiated during OKR adaptation. Potentiation of eye acceleration exhibited different properties between the nasotemporal and temporonasal OKRs, indicating distinct visuomotor circuits underlying the two. Lesions and optogenetic manipulation of the cerebellum provide constraints on neural circuits mediating visually driven eye acceleration and its adaptation.
视动反应(OKR)由视觉环境整体运动后的平滑眼球运动组成,其可抑制视网膜上的图像滑动以提高视敏度。尽管OKR的有效表现限于相当缓慢和低频的视觉刺激,但它可通过依赖小脑的机制适应性改善。为更好地理解限制OKR表现的神经回路机制,我们监测了OKR适应过程中OKR不同运动学特征的变化,发现刺激开始时的眼球加速度主要限制了OKR的表现,但可通过视觉经验显著增强。与鼻颞方向相比,颞鼻方向的眼球加速度更多地依赖于小脑的同侧绒球复合体。OKR后的注视保持也与眼球加速度增强同时发生改变。光遗传学操作显示,同步兴奋和抑制绒球复合体浦肯野细胞可分别有效加速鼻颞和颞鼻方向的眼球运动。这些结果共同描绘了小鼠OKR不同方面的多条运动通路,并限制了关于小脑依赖性运动加速度调节细胞机制的假说。
尽管视觉诱发的平滑眼球运动,即视动反应(OKR),已在各种物种中研究了数十年,但动眼神经控制和适应的神经回路机制仍然难以捉摸。在本研究中,我们在适应训练过程中评估了小鼠OKR的运动学。我们的分析表明,视觉刺激开始时的眼球加速度主要限制了OKR的工作速度和频率范围,但在OKR适应过程中可显著增强。鼻颞和颞鼻OKR之间眼球加速度的增强表现出不同的特性,表明两者背后存在不同的视觉运动回路。小脑的损伤和光遗传学操作对介导视觉驱动的眼球加速度及其适应的神经回路提供了限制。