Yeow Jonathan, Xu Jiangtao, Boyer Cyrille
Centre for Advanced Macromolecular Design (CAMD), The University of New South Wales; Australian Centre for NanoMedicine (ACN), The University of New South Wales; School of Chemical Engineering, The University of New South Wales.
Centre for Advanced Macromolecular Design (CAMD), The University of New South Wales; Australian Centre for NanoMedicine (ACN), The University of New South Wales; School of Chemical Engineering, The University of New South Wales;
J Vis Exp. 2016 Jun 8(112):54269. doi: 10.3791/54269.
Presented herein is a protocol for the facile synthesis of worm-like micelles by visible light mediated dispersion polymerization. This approach begins with the synthesis of a hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) homopolymer using reversible addition-fragmentation chain-transfer (RAFT) polymerization. Under mild visible light irradiation (λ = 460 nm, 0.7 mW/cm(2)), this macro-chain transfer agent (macro-CTA) in the presence of a ruthenium based photoredox catalyst, Ru(bpy)3Cl2 can be chain extended with a second monomer to form a well-defined block copolymer in a process known as Photoinduced Electron Transfer RAFT (PET-RAFT). When PET-RAFT is used to chain extend POEGMA with benzyl methacrylate (BzMA) in ethanol (EtOH), polymeric nanoparticles with different morphologies are formed in situ according to a polymerization-induced self-assembly (PISA) mechanism. Self-assembly into nanoparticles presenting POEGMA chains at the corona and poly(benzyl methacrylate) (PBzMA) chains in the core occurs in situ due to the growing insolubility of the PBzMA block in ethanol. Interestingly, the formation of highly pure worm-like micelles can be readily monitored by observing the onset of a highly viscous gel in situ due to nanoparticle entanglements occurring during the polymerization. This process thereby allows for a more reproducible synthesis of worm-like micelles simply by monitoring the solution viscosity during the course of the polymerization. In addition, the light stimulus can be intermittently applied in an ON/OFF manner demonstrating temporal control over the nanoparticle morphology.
本文介绍了一种通过可见光介导的分散聚合简便合成蠕虫状胶束的方法。该方法首先使用可逆加成-断裂链转移(RAFT)聚合合成亲水性聚(寡聚(乙二醇)甲基丙烯酸甲酯)(POEGMA)均聚物。在温和的可见光照射(λ = 460 nm,0.7 mW/cm²)下,这种大分子链转移剂(大分子CTA)在钌基光氧化还原催化剂Ru(bpy)₃Cl₂存在下,可以与第二种单体进行链增长,在一个称为光诱导电子转移RAFT(PET-RAFT)的过程中形成定义明确的嵌段共聚物。当使用PET-RAFT在乙醇(EtOH)中将POEGMA与甲基丙烯酸苄酯(BzMA)进行链增长时,根据聚合诱导自组装(PISA)机制原位形成具有不同形态的聚合物纳米颗粒。由于PBzMA嵌段在乙醇中的溶解度不断降低,原位发生自组装形成在冠层呈现POEGMA链而在核层呈现聚(甲基丙烯酸苄酯)(PBzMA)链的纳米颗粒。有趣的是,由于聚合过程中发生纳米颗粒缠结,通过原位观察高粘性凝胶的出现可以很容易地监测到高纯度蠕虫状胶束的形成。因此,该过程仅通过在聚合过程中监测溶液粘度就可以实现蠕虫状胶束更可重复的合成。此外,光刺激可以以开/关的方式间歇施加,从而实现对纳米颗粒形态的时间控制。