Suppr超能文献

使用光氧化还原催化剂通过可见光介导的分散聚合简便合成蠕虫状胶束。

Facile Synthesis of Worm-like Micelles by Visible Light Mediated Dispersion Polymerization Using Photoredox Catalyst.

作者信息

Yeow Jonathan, Xu Jiangtao, Boyer Cyrille

机构信息

Centre for Advanced Macromolecular Design (CAMD), The University of New South Wales; Australian Centre for NanoMedicine (ACN), The University of New South Wales; School of Chemical Engineering, The University of New South Wales.

Centre for Advanced Macromolecular Design (CAMD), The University of New South Wales; Australian Centre for NanoMedicine (ACN), The University of New South Wales; School of Chemical Engineering, The University of New South Wales;

出版信息

J Vis Exp. 2016 Jun 8(112):54269. doi: 10.3791/54269.

Abstract

Presented herein is a protocol for the facile synthesis of worm-like micelles by visible light mediated dispersion polymerization. This approach begins with the synthesis of a hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) homopolymer using reversible addition-fragmentation chain-transfer (RAFT) polymerization. Under mild visible light irradiation (λ = 460 nm, 0.7 mW/cm(2)), this macro-chain transfer agent (macro-CTA) in the presence of a ruthenium based photoredox catalyst, Ru(bpy)3Cl2 can be chain extended with a second monomer to form a well-defined block copolymer in a process known as Photoinduced Electron Transfer RAFT (PET-RAFT). When PET-RAFT is used to chain extend POEGMA with benzyl methacrylate (BzMA) in ethanol (EtOH), polymeric nanoparticles with different morphologies are formed in situ according to a polymerization-induced self-assembly (PISA) mechanism. Self-assembly into nanoparticles presenting POEGMA chains at the corona and poly(benzyl methacrylate) (PBzMA) chains in the core occurs in situ due to the growing insolubility of the PBzMA block in ethanol. Interestingly, the formation of highly pure worm-like micelles can be readily monitored by observing the onset of a highly viscous gel in situ due to nanoparticle entanglements occurring during the polymerization. This process thereby allows for a more reproducible synthesis of worm-like micelles simply by monitoring the solution viscosity during the course of the polymerization. In addition, the light stimulus can be intermittently applied in an ON/OFF manner demonstrating temporal control over the nanoparticle morphology.

摘要

本文介绍了一种通过可见光介导的分散聚合简便合成蠕虫状胶束的方法。该方法首先使用可逆加成-断裂链转移(RAFT)聚合合成亲水性聚(寡聚(乙二醇)甲基丙烯酸甲酯)(POEGMA)均聚物。在温和的可见光照射(λ = 460 nm,0.7 mW/cm²)下,这种大分子链转移剂(大分子CTA)在钌基光氧化还原催化剂Ru(bpy)₃Cl₂存在下,可以与第二种单体进行链增长,在一个称为光诱导电子转移RAFT(PET-RAFT)的过程中形成定义明确的嵌段共聚物。当使用PET-RAFT在乙醇(EtOH)中将POEGMA与甲基丙烯酸苄酯(BzMA)进行链增长时,根据聚合诱导自组装(PISA)机制原位形成具有不同形态的聚合物纳米颗粒。由于PBzMA嵌段在乙醇中的溶解度不断降低,原位发生自组装形成在冠层呈现POEGMA链而在核层呈现聚(甲基丙烯酸苄酯)(PBzMA)链的纳米颗粒。有趣的是,由于聚合过程中发生纳米颗粒缠结,通过原位观察高粘性凝胶的出现可以很容易地监测到高纯度蠕虫状胶束的形成。因此,该过程仅通过在聚合过程中监测溶液粘度就可以实现蠕虫状胶束更可重复的合成。此外,光刺激可以以开/关的方式间歇施加,从而实现对纳米颗粒形态的时间控制。

相似文献

3
Visible Light-Mediated Polymerization-Induced Self-Assembly in the Absence of External Catalyst or Initiator.
ACS Macro Lett. 2016 May 17;5(5):558-564. doi: 10.1021/acsmacrolett.6b00235. Epub 2016 Apr 12.
5
Evolution of Morphology of POEGMA-b-PBzMA Nano-Objects Formed by PISA.
Macromol Rapid Commun. 2019 Jan;40(2):e1800331. doi: 10.1002/marc.201800331. Epub 2018 Jul 4.
6
How Do Spherical Diblock Copolymer Nanoparticles Grow during RAFT Alcoholic Dispersion Polymerization?
Macromolecules. 2016 Jan 12;49(1):172-181. doi: 10.1021/acs.macromol.5b02385. Epub 2015 Dec 28.
7
Poly(sarcosine)-Based Nano-Objects with Multi-Protease Resistance by Aqueous Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA).
Biomacromolecules. 2018 Nov 12;19(11):4453-4462. doi: 10.1021/acs.biomac.8b01326. Epub 2018 Nov 1.
8
2-(Methylthio)ethyl Methacrylate: A Versatile Monomer for Stimuli Responsiveness and Polymerization-Induced Self-Assembly in the Presence of Air.
ACS Macro Lett. 2017 Nov 21;6(11):1237-1244. doi: 10.1021/acsmacrolett.7b00731. Epub 2017 Oct 24.
9
In situ conversion from crew-cut to hairy micelles by surface-initiated polymerization.
J Colloid Interface Sci. 2021 Dec;603:468-477. doi: 10.1016/j.jcis.2021.06.119. Epub 2021 Jun 22.
10
Synthesis of Light-Responsive Pyrene-Based Polymer Nanoparticles via Polymerization-Induced Self-Assembly.
Macromol Rapid Commun. 2019 Jan;40(2):e1800510. doi: 10.1002/marc.201800510. Epub 2018 Sep 3.

引用本文的文献

1
Characterization and Optimization of Vesicle Properties in bioPISA: from Size Distribution to Post-Assembly Loading.
Adv Biol (Weinh). 2025 May;9(5):e2400483. doi: 10.1002/adbi.202400483. Epub 2024 Dec 18.
2
Artificial cell synthesis using biocatalytic polymerization-induced self-assembly.
Nat Chem. 2024 Apr;16(4):564-574. doi: 10.1038/s41557-023-01391-y. Epub 2023 Dec 4.
3
Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA): New Insights and Opportunities.
Adv Sci (Weinh). 2017 May 30;4(7):1700137. doi: 10.1002/advs.201700137. eCollection 2017 Jul.

本文引用的文献

3
Thermo-responsive diblock copolymer worm gels in non-polar solvents.
J Am Chem Soc. 2014 Apr 16;136(15):5790-8. doi: 10.1021/ja501756h. Epub 2014 Apr 8.
4
Polymerization-induced self-assembly of galactose-functionalized biocompatible diblock copolymers for intracellular delivery.
J Am Chem Soc. 2013 Sep 11;135(36):13574-81. doi: 10.1021/ja407033x. Epub 2013 Aug 28.
6
Sterilizable gels from thermoresponsive block copolymer worms.
J Am Chem Soc. 2012 Jun 13;134(23):9741-8. doi: 10.1021/ja3024059. Epub 2012 May 31.
7
Aqueous dispersion polymerization: a new paradigm for in situ block copolymer self-assembly in concentrated solution.
J Am Chem Soc. 2011 Oct 5;133(39):15707-13. doi: 10.1021/ja205887v. Epub 2011 Sep 8.
8
One-pot synthesis of nanomaterials via RAFT polymerization induced self-assembly and morphology transition.
Chem Commun (Camb). 2009 Oct 21(39):5883-5. doi: 10.1039/b912804b. Epub 2009 Aug 7.
9
Shape effects of filaments versus spherical particles in flow and drug delivery.
Nat Nanotechnol. 2007 Apr;2(4):249-55. doi: 10.1038/nnano.2007.70. Epub 2007 Mar 25.
10
Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers.
Science. 1995 Jun 23;268(5218):1728-31. doi: 10.1126/science.268.5218.1728.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验