Suppr超能文献

哺乳动物颅神经管闭合过程中非神经外胚层的动态行为

Dynamic behaviors of the non-neural ectoderm during mammalian cranial neural tube closure.

作者信息

Ray Heather J, Niswander Lee A

机构信息

Department of Pediatrics, Cell Biology Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA.

Department of Pediatrics, Cell Biology Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA.

出版信息

Dev Biol. 2016 Aug 15;416(2):279-85. doi: 10.1016/j.ydbio.2016.06.030. Epub 2016 Jun 22.

Abstract

The embryonic brain and spinal cord initially form through the process of neural tube closure (NTC). NTC is thought to be highly similar between rodents and humans, and studies of mouse genetic mutants have greatly increased our understanding of the molecular basis of NTC with relevance for human neural tube defects. In addition, studies using amphibian and chick embryos have shed light into the cellular and tissue dynamics underlying NTC. However, the dynamics of mammalian NTC has been difficult to study due to in utero development until recently when advances in mouse embryo ex vivo culture techniques along with confocal microscopy have allowed for imaging of mouse NTC in real time. Here, we have performed live imaging of mouse embryos with a particular focus on the non-neural ectoderm (NNE). Previous studies in multiple model systems have found that the NNE is important for proper NTC, but little is known about the behavior of these cells during mammalian NTC. Here we utilized a NNE-specific genetic labeling system to assess NNE dynamics during murine NTC and identified different NNE cell behaviors as the cranial region undergoes NTC. These results bring valuable new insight into regional differences in cellular behavior during NTC that may be driven by different molecular regulators and which may underlie the various positional disruptions of NTC observed in humans with neural tube defects.

摘要

胚胎期的脑和脊髓最初是通过神经管闭合(NTC)过程形成的。人们认为啮齿动物和人类的神经管闭合过程高度相似,对小鼠基因变异体的研究极大地增进了我们对与人类神经管缺陷相关的神经管闭合分子基础的理解。此外,利用两栖动物和鸡胚胎进行的研究揭示了神经管闭合背后的细胞和组织动态变化。然而,由于胚胎在子宫内发育,哺乳动物神经管闭合的动态变化一直难以研究,直到最近小鼠胚胎体外培养技术的进步以及共聚焦显微镜的应用使得实时成像小鼠神经管闭合成为可能。在此,我们对小鼠胚胎进行了活体成像,特别关注非神经外胚层(NNE)。此前在多个模型系统中的研究发现,非神经外胚层对正常的神经管闭合很重要,但对于这些细胞在哺乳动物神经管闭合过程中的行为了解甚少。在这里,我们利用一种非神经外胚层特异性基因标记系统来评估小鼠神经管闭合过程中非神经外胚层的动态变化,并确定了在颅部区域发生神经管闭合时非神经外胚层细胞的不同行为。这些结果为神经管闭合过程中细胞行为的区域差异带来了有价值的新见解,这种差异可能由不同的分子调节因子驱动,并且可能是人类神经管缺陷中观察到的各种神经管闭合位置异常的基础。

相似文献

1
Dynamic behaviors of the non-neural ectoderm during mammalian cranial neural tube closure.
Dev Biol. 2016 Aug 15;416(2):279-85. doi: 10.1016/j.ydbio.2016.06.030. Epub 2016 Jun 22.
3
Grainyhead-like 2 downstream targets act to suppress epithelial-to-mesenchymal transition during neural tube closure.
Development. 2016 Apr 1;143(7):1192-204. doi: 10.1242/dev.129825. Epub 2016 Feb 22.
4
Mammalian embryos show metabolic plasticity toward the surrounding environment during neural tube closure.
Genes Cells. 2018 Sep;23(9):794-802. doi: 10.1111/gtc.12626. Epub 2018 Aug 8.
5
Morphogenetic movements in the neural plate and neural tube: mouse.
Wiley Interdiscip Rev Dev Biol. 2014 Jan-Feb;3(1):59-68. doi: 10.1002/wdev.120. Epub 2013 May 29.
6
Dynamic imaging of mammalian neural tube closure.
Dev Biol. 2010 Aug 15;344(2):941-7. doi: 10.1016/j.ydbio.2010.06.010. Epub 2010 Jun 14.
7
Cell movements of the deep layer of non-neural ectoderm underlie complete neural tube closure in Xenopus.
Development. 2012 Apr;139(8):1417-26. doi: 10.1242/dev.073239. Epub 2012 Feb 29.
9
Lacking of palladin leads to multiple cellular events changes which contribute to NTD.
Neural Dev. 2017 Mar 24;12(1):4. doi: 10.1186/s13064-017-0081-6.

引用本文的文献

1
A Lifeact-EGFP quail for studying actin dynamics in vivo.
J Cell Biol. 2024 Sep 2;223(9). doi: 10.1083/jcb.202404066. Epub 2024 Jun 24.
2
mC methylated lncRncr3-MeCP2 interaction restricts miR124a-initiated neurogenesis.
Nat Commun. 2024 Jun 15;15(1):5136. doi: 10.1038/s41467-024-49368-w.
3
Fold-and-fuse neurulation in zebrafish requires Vangl2.
bioRxiv. 2024 Dec 2:2023.11.09.566412. doi: 10.1101/2023.11.09.566412.
5
The cellular dynamics of neural tube formation.
Biochem Soc Trans. 2023 Feb 27;51(1):343-352. doi: 10.1042/BST20220871.
6
Hindbrain neuropore tissue geometry determines asymmetric cell-mediated closure dynamics in mouse embryos.
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2023163118.
7
Hallmarks of primary neurulation are conserved in the zebrafish forebrain.
Commun Biol. 2021 Jan 29;4(1):147. doi: 10.1038/s42003-021-01655-8.
10
Non-neural surface ectodermal rosette formation and F-actin dynamics drive mammalian neural tube closure.
Biochem Biophys Res Commun. 2020 Jun 4;526(3):647-653. doi: 10.1016/j.bbrc.2020.03.138. Epub 2020 Apr 2.

本文引用的文献

1
Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning.
Nature. 2013 May 30;497(7451):628-32. doi: 10.1038/nature12157. Epub 2013 Apr 28.
2
In toto live imaging of mouse morphogenesis and new insights into neural tube closure.
Development. 2013 Jan 1;140(1):226-36. doi: 10.1242/dev.085001. Epub 2012 Nov 22.
3
Live imaging of apoptosis in a novel transgenic mouse highlights its role in neural tube closure.
J Cell Biol. 2011 Dec 12;195(6):1047-60. doi: 10.1083/jcb.201104057.
4
Dynamic imaging of mammalian neural tube closure.
Dev Biol. 2010 Aug 15;344(2):941-7. doi: 10.1016/j.ydbio.2010.06.010. Epub 2010 Jun 14.
5
Local protease signaling contributes to neural tube closure in the mouse embryo.
Dev Cell. 2010 Jan 19;18(1):25-38. doi: 10.1016/j.devcel.2009.11.014.
6
Development of the vertebrate central nervous system: formation of the neural tube.
Prenat Diagn. 2009 Apr;29(4):303-11. doi: 10.1002/pd.2206.
7
A global double-fluorescent Cre reporter mouse.
Genesis. 2007 Sep;45(9):593-605. doi: 10.1002/dvg.20335.
8
Neural fold fusion in the cranial region of the chick embryo.
Dev Dyn. 1998 Aug;212(4):473-81. doi: 10.1002/(SICI)1097-0177(199808)212:4<473::AID-AJA1>3.0.CO;2-E.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验