Zou Hui, Zhu Ji, Hastie Trevor
School of Statistics, University of Minnesota, Minneapolis, Minnesota 55455 USA.
Department of Statistics, University of Michigan, Ann Arbor, Michigan 48109 USA.
Ann Appl Stat. 2008 Dec;2(4):1290-1306. doi: 10.1214/08-AOAS198.
Fisher-consistent loss functions play a fundamental role in the construction of successful binary margin-based classifiers. In this paper we establish the Fisher-consistency condition for multicategory classification problems. Our approach uses the margin vector concept which can be regarded as a multicategory generalization of the binary margin. We characterize a wide class of smooth convex loss functions that are Fisher-consistent for multicategory classification. We then consider using the margin-vector-based loss functions to derive multicategory boosting algorithms. In particular, we derive two new multicategory boosting algorithms by using the exponential and logistic regression losses.
费希尔一致性损失函数在成功构建基于二元间隔的分类器中起着基础性作用。在本文中,我们建立了多类别分类问题的费希尔一致性条件。我们的方法使用了间隔向量概念,它可被视为二元间隔的多类别推广。我们刻画了一大类对于多类别分类是费希尔一致的光滑凸损失函数。然后我们考虑使用基于间隔向量的损失函数来推导多类别提升算法。特别地,我们通过使用指数损失和逻辑回归损失推导出了两种新的多类别提升算法。