Yee Ada X, Chen Lu
Department of Neurosurgery, Neurosciences Program, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305-5453.
Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305-5453.
Synapse. 2016 Nov;70(11):445-52. doi: 10.1002/syn.21921. Epub 2016 Jul 12.
Retinoic acid (RA), a developmental morphogen, has emerged in recent studies as a novel synaptic signaling molecule that acts in mature hippocampal neurons to modulate excitatory and inhibitory synaptic transmission in the context of homeostatic synaptic plasticity. However, it is unclear whether RA is capable of modulating neural circuits outside of the hippocampus, and if so, whether the mode of RA's action at synapses is similar to that within the hippocampal network. Here we explore for the first time RA's synaptic function outside the hippocampus and uncover a novel function of all-trans retinoic acid at inhibitory synapses. Acute RA treatment increases spontaneous inhibitory synaptic transmission in L2/3 pyramidal neurons of the somatosensory cortex, and this effect requires expression of RA's receptor RARα both pre- and post-synaptically. Intriguingly, RA does not seem to affect evoked inhibitory transmission assayed with either extracellular stimulation or direct activation of action potentials in presynaptic interneurons at connected pairs of interneurons and pyramidal neurons. Taken together, these results suggest that RA's action at synapses is not monotonous, but is diverse depending on the type of synaptic connection (excitatory versus inhibitory) and circuit (hippocampal versus cortical). Thus, synaptic signaling of RA may mediate multi-faceted regulation of synaptic plasticity. In addition to its classic roles in brain development, retinoic acid (RA) has recently been shown to regulate excitatory and inhibitory transmission in the adult brain. Here, the authors show that in layer 2/3 (L2/3) of the somatosensory cortex (S1), acute RA induces increases in spontaneous but not action-potential evoked transmission, and that this requires retinoic acid receptor (RARα) both in presynaptic PV-positive interneurons and postsynaptic pyramidal (PN) neurons.
视黄酸(RA)是一种发育形态发生素,在最近的研究中已成为一种新型的突触信号分子,它在成熟海马神经元中发挥作用,在稳态突触可塑性的背景下调节兴奋性和抑制性突触传递。然而,目前尚不清楚RA是否能够调节海马体外的神经回路,如果可以,RA在突触处的作用模式是否与海马网络中的作用模式相似。在这里,我们首次探索了RA在海马体外的突触功能,并揭示了全反式视黄酸在抑制性突触中的新功能。急性RA处理可增加体感皮层L2/3锥体神经元的自发性抑制性突触传递,并且这种效应在突触前和突触后都需要RA受体RARα的表达。有趣的是,RA似乎不影响通过细胞外刺激或在连接的中间神经元和锥体神经元对中对突触前中间神经元的动作电位进行直接激活所检测到的诱发抑制性传递。综上所述,这些结果表明,RA在突触处的作用并非单一的,而是根据突触连接类型(兴奋性与抑制性)和神经回路(海马与皮层)的不同而有所差异。因此,RA的突触信号可能介导突触可塑性的多方面调节。除了在大脑发育中的经典作用外,视黄酸(RA)最近还被证明可调节成人大脑中的兴奋性和抑制性传递。在这里,作者表明,在体感皮层(S1)的第2/3层(L2/3)中,急性RA可诱导自发性而非动作电位诱发传递的增加,并且这在突触前PV阳性中间神经元和突触后锥体(PN)神经元中都需要视黄酸受体(RARα)。