Garcia-Bereguiain Miguel Angel, Gonzalez-Islas Carlos, Lindsly Casie, Wenner Peter
Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, Laboratorio de Biomedicina, Facultad de Ciencias de la Vida Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador, and.
Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, Doctorado en Ciencias Biológicas Universidad Autónoma de Tlaxcala, Tlaxcala 90062, Mexico.
J Neurosci. 2016 Jul 6;36(27):7268-82. doi: 10.1523/JNEUROSCI.4066-15.2016.
Homeostatic plasticity mechanisms maintain cellular or network spiking activity within a physiologically functional range through compensatory changes in synaptic strength or intrinsic cellular excitability. Synaptic scaling is one form of homeostatic plasticity that is triggered after blockade of spiking or neurotransmission in which the strengths of all synaptic inputs to a cell are multiplicatively scaled upward or downward in a compensatory fashion. We have shown previously that synaptic upscaling could be triggered in chick embryo spinal motoneurons by complete blockade of spiking or GABAA receptor (GABAAR) activation for 2 d in vivo Here, we alter GABAAR activation in a more physiologically relevant manner by chronically adjusting presynaptic GABA release in vivo using nicotinic modulators or an mGluR2 agonist. Manipulating GABAAR activation in this way triggered scaling in a mechanistically similar manner to scaling induced by complete blockade of GABAARs. Remarkably, we find that altering action-potential (AP)-independent spontaneous release was able to fully account for the observed bidirectional scaling, whereas dramatic changes in spiking activity associated with spontaneous network activity had little effect on quantal amplitude. The reliance of scaling on an AP-independent process challenges the plasticity's relatedness to spiking in the living embryonic spinal network. Our findings have implications for the trigger and function of synaptic scaling and suggest that spontaneous release functions to regulate synaptic strength homeostatically in vivo
Homeostatic synaptic scaling is thought to prevent inappropriate levels of spiking activity through compensatory adjustments in the strength of synaptic inputs. Therefore, it is thought that perturbations in spike rate trigger scaling. Here, we find that dramatic changes in spiking activity in the embryonic spinal cord have little effect on synaptic scaling; conversely, alterations in GABAA receptor activation due to action-potential-independent GABA vesicle release can trigger scaling. The findings suggest that scaling in the living embryonic spinal cord functions to maintain synaptic strength and challenge the view that scaling acts to regulate spiking activity homeostatically. Finally, the results indicate that fetal exposure to drugs that influence GABA spontaneous release, such as nicotine, could profoundly affect synaptic maturation.
稳态可塑性机制通过突触强度或细胞内在兴奋性的补偿性变化,将细胞或网络的放电活动维持在生理功能范围内。突触缩放是稳态可塑性的一种形式,它在放电或神经传递被阻断后触发,此时细胞所有突触输入的强度以补偿方式成比例地向上或向下缩放。我们之前已经表明,在鸡胚脊髓运动神经元中,通过在体内完全阻断放电或激活GABAA受体(GABAAR)2天可触发突触放大。在此,我们通过在体内使用烟碱调节剂或代谢型谷氨酸受体2(mGluR2)激动剂长期调节突触前GABA释放,以一种更符合生理的方式改变GABAAR激活。以这种方式操纵GABAAR激活引发的缩放,其机制与完全阻断GABAAR所诱导的缩放相似。值得注意的是,我们发现改变与动作电位(AP)无关的自发释放能够完全解释所观察到的双向缩放,而与自发网络活动相关的放电活动的显著变化对量子幅度影响很小。缩放对AP非依赖性过程的依赖,挑战了这种可塑性与活体胚胎脊髓网络中放电的相关性。我们的发现对突触缩放的触发和功能具有启示意义,并表明自发释放的功能是在体内稳态调节突触强度。
稳态突触缩放被认为通过对突触输入强度的补偿性调整来防止不适当水平的放电活动。因此,人们认为放电频率的扰动会触发缩放。在此,我们发现胚胎脊髓中放电活动的显著变化对突触缩放影响很小;相反,由于与动作电位无关的GABA囊泡释放导致的GABAA受体激活的改变可触发缩放。这些发现表明,活体胚胎脊髓中的缩放功能是维持突触强度,并挑战了缩放起到稳态调节放电活动的观点。最后,结果表明胎儿接触影响GABA自发释放的药物,如尼古丁,可能会深刻影响突触成熟。