Said Nadia, Engelhart Michael, Kirches Christian, Körkel Stefan, Holt Daniel V
Institute of Psychology, Heidelberg University, Hauptstr. 47-51, 69117 Heidelberg, Germany.
Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany.
PLoS One. 2016 Jul 7;11(7):e0158832. doi: 10.1371/journal.pone.0158832. eCollection 2016.
Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.
认知计算模型提供了一个接口,用于将先进的数学工具和方法与心理学、认知科学和神经科学中基于经验支持的行为理论相连接。在本文中,我们考虑一种基于实例学习的计算模型,它是在ACT-R认知架构中实现的。我们提出了一种方法,用于获得此类认知模型的数学重新表述,以提高其计算可处理性。对于成熟的制糖厂动态决策任务,我们进行了一项模拟研究,以分析核心模型参数。我们展示了如何应用数学优化技术,以有效地识别相对于不同优化目标的最优参数值。除了这些方法上的贡献外,我们的分析揭示了该特定任务对初始设置的敏感性,并对人类平均表现如何偏离潜在最优表现产生了新的见解。我们通过讨论我们方法的可能扩展以及应用更强大的基于导数的优化方法的未来步骤来结束本文。