Yang Lin, Shao Bin, Zhang Xiangtong, Cheng Qian, Lin Tie, Liu Enzhong
Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, P.R. China Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin, P.R. China.
Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, P.R. China.
J Biomater Appl. 2016 Sep;31(3):400-10. doi: 10.1177/0885328216658779. Epub 2016 Jul 7.
Achieving a radiographic gross total resection in high-grade gliomas improves overall survival. Many technologies such as intraoperative microscope, intraoperative ultrasound, fluorescence imaging, and intraoperative magnetic resonance imaging have been applied to improve tumor resection. However, most commercial available magnetic resonance imaging contrast agents have limited permeability across the blood-brain barrier and are cleared rapidly from circulation. Fluorescence imaging discriminates tumor from normal tissue and provides a promising new strategy to maximize sage surgical resection of tumor. However, the penetration depth of fluorescence imaging is generally low.
In this study, a new type of magnetite NaGdF4:Yb(3+),Er(3+),Li(+)@NaGdF4 (UCNPs) core-shell nanoparticles, coated with SiO2 and further functionalized with glioma and blood-brain barrier targeting motifs, was prepared for dual-modal in vivo upconversion imaging and magnetic resonance imaging.
The as-prepared multifunctional upconversion nanoparticles (UCNPs@SiO2-CX-Lf) were biocompatible, showed strong upconversion luminescence under excitation of 980 nm, and provided high signal-to-noise ratio in vivo. Moreover, UCNPs@SiO2-CX-Lf nanoparticles showed a high relaxivity of 1.25 S(-1 )mM(-1) and were successfully applied as contrast agent for magnetic resonance imaging in tumor xenograft rat model with prolonged tumor signal enhancement. In vivo and magnetic resonance imaging Upconversion Luminescence (UCL) imaging results indicated that these particles can across the blood-brain barrier, bind to glioma, gave bright UCL signal and T1 magnetic resonance imaging contrast.
Targeted UCL and magnetic resonance imaging dual-modal in vivo imaging using Yb(3+)/Er(3+)/Li(+) codoped NaGdF4 core-shell nanostructure can serve as a platform technology for the next generation of intraoperative probes for image-guided tumor resection.
在高级别胶质瘤中实现影像学上的大体全切可提高总生存期。许多技术,如术中显微镜、术中超声、荧光成像和术中磁共振成像,已被应用于改善肿瘤切除效果。然而,大多数市售的磁共振成像造影剂穿过血脑屏障的通透性有限,且迅速从循环中清除。荧光成像可区分肿瘤与正常组织,并为最大限度地实现肿瘤安全手术切除提供了一种有前景的新策略。然而,荧光成像的穿透深度通常较低。
在本研究中,制备了一种新型的核壳结构磁铁矿NaGdF4:Yb(3+)、Er(3+)、Li(+)@NaGdF4(上转换纳米颗粒),其表面包覆有SiO2,并进一步用胶质瘤和血脑屏障靶向基序进行功能化修饰,用于体内双模态上转换成像和磁共振成像。
所制备的多功能上转换纳米颗粒(UCNPs@SiO2-CX-Lf)具有生物相容性,在980nm激发下表现出强烈的上转换发光,且在体内提供了高信噪比。此外,UCNPs@SiO2-CX-Lf纳米颗粒表现出1.25S(-1)mM(-1)的高弛豫率,并成功应用于肿瘤异种移植大鼠模型的磁共振成像造影剂,使肿瘤信号增强时间延长。体内磁共振成像和上转换发光(UCL)成像结果表明,这些颗粒能够穿过血脑屏障,与胶质瘤结合,产生明亮的UCL信号和T1磁共振成像造影。
使用Yb(3+)/Er(3+)/Li(+)共掺杂的NaGdF4核壳纳米结构进行靶向UCL和磁共振成像双模态体内成像,可作为下一代用于图像引导肿瘤切除的术中探针的平台技术。