Suppr超能文献

癌症起始、发展及精准抗癌治疗中的细胞内和细胞间信号网络:RAS作为情境信号枢纽

Intracellular and intercellular signaling networks in cancer initiation, development and precision anti-cancer therapy: RAS acts as contextual signaling hub.

作者信息

Csermely Peter, Korcsmáros Tamás, Nussinov Ruth

机构信息

Department of Medical Chemistry, Semmelweis University, P.O. Box 2, H-1428 Budapest, Hungary.

Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK; Earlham Institute/TGAC, The Genome Analysis Centre, Norwich Research Park, Norwich NR4 7UH, UK.

出版信息

Semin Cell Dev Biol. 2016 Oct;58:55-9. doi: 10.1016/j.semcdb.2016.07.005. Epub 2016 Jul 6.

Abstract

Cancer initiation and development are increasingly perceived as systems-level phenomena, where intra- and inter-cellular signaling networks of the ecosystem of cancer and stromal cells offer efficient methodologies for outcome prediction and intervention design. Within this framework, RAS emerges as a 'contextual signaling hub', i.e. the final result of RAS activation or inhibition is determined by the signaling network context. Current therapies often 'train' cancer cells shifting them to a novel attractor, which has increased metastatic potential and drug resistance. The few therapy-surviving cancer cells are surrounded by massive cell death triggering a primordial adaptive and reparative general wound healing response. Overall, dynamic analysis of patient- and disease-stage specific intracellular and intercellular signaling networks may open new areas of anticancer therapy using multitarget drugs, drugs combinations, edgetic drugs, as well as help design 'gentler', differentiation and maintenance therapies.

摘要

癌症的起始和发展越来越被视为系统层面的现象,其中癌症和基质细胞生态系统的细胞内和细胞间信号网络为结果预测和干预设计提供了有效的方法。在此框架内,RAS成为一个“情境信号枢纽”,即RAS激活或抑制的最终结果由信号网络背景决定。当前的疗法常常“训练”癌细胞,使其转变为具有更高转移潜能和耐药性的新吸引子。少数经治疗存活下来的癌细胞被大量细胞死亡所包围,从而引发原始的适应性和修复性一般伤口愈合反应。总体而言,对患者和疾病阶段特异性的细胞内和细胞间信号网络进行动态分析,可能会开辟使用多靶点药物、药物组合、边缘药物进行抗癌治疗的新领域,也有助于设计“更温和”的分化和维持疗法。

相似文献

3
RAS signaling in carcinogenesis, cancer therapy and resistance mechanisms.
J Hematol Oncol. 2024 Nov 9;17(1):108. doi: 10.1186/s13045-024-01631-9.
4
Biology, pathology, and therapeutic targeting of RAS.
Adv Cancer Res. 2020;148:69-146. doi: 10.1016/bs.acr.2020.05.002. Epub 2020 Jul 9.
5
Cancer-related networks: a help to understand, predict and change malignant transformation.
Semin Cancer Biol. 2013 Aug;23(4):209-12. doi: 10.1016/j.semcancer.2013.06.011. Epub 2013 Jul 2.
6
Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling.
Genes (Basel). 2021 Apr 10;12(4):553. doi: 10.3390/genes12040553.
7
Cdc42 Signaling Pathway Inhibition as a Therapeutic Target in Ras- Related Cancers.
Curr Med Chem. 2017;24(32):3485-3507. doi: 10.2174/0929867324666170602082956.
8
Recent advances in targeted degradation in the RAS pathway.
Future Med Chem. 2025 Mar;17(6):693-708. doi: 10.1080/17568919.2025.2476387. Epub 2025 Mar 10.
9
10
Pan-cancer network disorders revealed by overall and local signaling entropy.
J Mol Cell Biol. 2021 Dec 6;13(9):622-635. doi: 10.1093/jmcb/mjab031.

引用本文的文献

1
Genomics-Driven Precision Medicine in Pediatric Solid Tumors.
Cancers (Basel). 2023 Feb 23;15(5):1418. doi: 10.3390/cancers15051418.
2
Artificial intelligence to guide precision anticancer therapy with multitargeted kinase inhibitors.
BMC Cancer. 2022 Nov 24;22(1):1211. doi: 10.1186/s12885-022-10293-0.
4
Allostery, and how to define and measure signal transduction.
Biophys Chem. 2022 Apr;283:106766. doi: 10.1016/j.bpc.2022.106766. Epub 2022 Jan 29.
5
Modular Reorganization of Signaling Networks during the Development of Colon Adenoma and Carcinoma.
J Phys Chem B. 2021 Feb 25;125(7):1716-1726. doi: 10.1021/acs.jpcb.0c09307. Epub 2021 Feb 9.
6
Addressing cancer signal transduction pathways with antisense and siRNA oligonucleotides.
NAR Cancer. 2020 Sep;2(3):zcaa025. doi: 10.1093/narcan/zcaa025. Epub 2020 Sep 25.
7
Computational Structural Biology: Successes, Future Directions, and Challenges.
Molecules. 2019 Feb 12;24(3):637. doi: 10.3390/molecules24030637.
9
Revisiting the hallmarks of cancer.
Am J Cancer Res. 2017 May 1;7(5):1016-1036. eCollection 2017.

本文引用的文献

2
The role of wild type RAS isoforms in cancer.
Semin Cell Dev Biol. 2016 Oct;58:60-9. doi: 10.1016/j.semcdb.2016.07.012. Epub 2016 Jul 13.
3
The complexities and versatility of the RAS-to-ERK signalling system in normal and cancer cells.
Semin Cell Dev Biol. 2016 Oct;58:96-107. doi: 10.1016/j.semcdb.2016.06.011. Epub 2016 Jun 24.
4
The value of genomics in dissecting the RAS-network and in guiding therapeutics for RAS-driven cancers.
Semin Cell Dev Biol. 2016 Oct;58:108-17. doi: 10.1016/j.semcdb.2016.06.012. Epub 2016 Jun 20.
5
Inflammation as a driver and vulnerability of KRAS mediated oncogenesis.
Semin Cell Dev Biol. 2016 Oct;58:127-35. doi: 10.1016/j.semcdb.2016.06.009. Epub 2016 Jun 11.
6
New structural and functional insight into the regulation of Ras.
Semin Cell Dev Biol. 2016 Oct;58:70-8. doi: 10.1016/j.semcdb.2016.06.006. Epub 2016 Jun 11.
7
Ras signaling through RASSF proteins.
Semin Cell Dev Biol. 2016 Oct;58:86-95. doi: 10.1016/j.semcdb.2016.06.007. Epub 2016 Jun 8.
8
Pathogen mimicry of host protein-protein interfaces modulates immunity.
Semin Cell Dev Biol. 2016 Oct;58:136-45. doi: 10.1016/j.semcdb.2016.06.004. Epub 2016 Jun 7.
9
Contextual signaling in cancer.
Semin Cell Dev Biol. 2016 Oct;58:118-26. doi: 10.1016/j.semcdb.2016.06.002. Epub 2016 Jun 3.
10
Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer.
Nature. 2016 May 26;533(7604):493-498. doi: 10.1038/nature18268. Epub 2016 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验