School of Biological and Medical Engineering, Hefei University of Technology , Hefei, Anhui 230009, China.
Materials Department, University of California at Santa Barbara , Santa Barbara, California 93111, United States.
ACS Nano. 2016 Aug 23;10(8):7558-65. doi: 10.1021/acsnano.6b02558. Epub 2016 Jul 11.
Generating aptamers that bind to specific metal ions is challenging because existing aptamer discovery methods typically require chemical labels or modifications that can alter the structure and properties of the ions. In this work, we report an aptamer discovery method that enables us to generate high-quality structure-switching aptamers (SSAs) that undergo a conformational change upon binding a metal ion target, without the requirement of labels or chemical modifications. Our method is more efficient than conventional selection methods because it enables direct measurement of target binding via fluorescence-activated cell sorting (FACS), isolating only the desired aptamers with the highest affinity. Using this strategy, we obtained a highly specific DNA SSA with ∼30-fold higher affinity than the best aptamer for Hg(2+) in the literature. We also discovered DNA aptamers that bind to Cu(2+) with excellent affinity and specificity. Both aptamers were obtained within four rounds of screening, demonstrating the efficiency of our aptamer discovery method. Given the growing availability of FACS, we believe our method offers a general strategy for discovering high-quality aptamers for other ions and small-molecule targets in an efficient and reproducible manner.
生成与特定金属离子结合的适体是具有挑战性的,因为现有的适体发现方法通常需要化学标记或修饰,这可能会改变离子的结构和性质。在这项工作中,我们报告了一种适体发现方法,使我们能够生成高质量的结构切换适体(SSA),这些适体在与金属离子靶标结合时会发生构象变化,而无需标签或化学修饰。我们的方法比传统的选择方法更有效,因为它能够通过荧光激活细胞分选(FACS)直接测量靶标结合,从而仅分离具有最高亲和力的所需适体。使用这种策略,我们获得了一种高度特异性的 DNA SSA,其与 Hg(2+)的亲和力比文献中最好的适体高约 30 倍。我们还发现了与 Cu(2+)具有优异亲和力和特异性的 DNA 适体。这两种适体都在四轮筛选中获得,证明了我们的适体发现方法的效率。鉴于 FACS 的日益普及,我们相信我们的方法为以高效和可重复的方式发现其他离子和小分子靶标的高质量适体提供了一种通用策略。