Suppr超能文献

BI-RADS磁共振成像描述符在可疑(4类)检查结果背景下的预测性能。

Predictive performance of BI-RADS magnetic resonance imaging descriptors in the context of suspicious (category 4) findings.

作者信息

de Almeida João Ricardo Maltez, Gomes André Boechat, Barros Thomas Pitangueiras, Fahel Paulo Eduardo, Rocha Mário de Seixas

机构信息

PhD, Physician, Department of Diagnostic Imaging, Clínica de Assistência à Mulher (CAM), Salvador, BA, Brazil.

Physician, Department of Diagnostic Imaging, Clínica de Assistência à Mulher (CAM), Salvador, BA, Brazil.

出版信息

Radiol Bras. 2016 May-Jun;49(3):137-43. doi: 10.1590/0100-3984.2015.0021.

Abstract

OBJECTIVE

To determine the positive predictive value (PPV) and likelihood ratio for magnetic resonance imaging (MRI) characteristics of category 4 lesions, as described in the Breast Imaging Reporting and Data System (BI-RADS(®)) lexicon, as well as to test the predictive performance of the descriptors using multivariate analysis and the area under the curve derived from a receiver operating characteristic (ROC) curve.

MATERIALS AND METHODS

This was a double-blind review study of 121 suspicious findings from 98 women examined between 2009 and 2013. The terminology was based on the 2013 edition of the BI-RADS.

RESULTS

Of the 121 suspicious findings, 53 (43.8%) were proven to be malignant lesions, with no significant difference between mass and non-mass enhancement (p = 0.846). The PPVs were highest for masses with a spiculated margin (71%) and round shape (63%), whereas segmental distribution achieved a high PPV (80%) for non-mass enhancement. Kinetic analyses performed poorly, except for type 3 curves applied to masses (PPV of 73%). Logistic regression models were significant for both patterns, although the results were better for masses, particularly when kinetic assessments were included (p = 0.015; pseudo R(2) = 0.48; area under the curve = 90%).

CONCLUSION

Some BI-RADS MRI descriptors have high PPV and good predictive performance-as demonstrated by ROC curve and multivariate analysis-when applied to BI-RADS category 4 findings. This may allow future stratification of this category.

摘要

目的

确定乳腺影像报告和数据系统(BI-RADS(®))词典中所述的4类病变磁共振成像(MRI)特征的阳性预测值(PPV)和似然比,并使用多变量分析以及从受试者操作特征(ROC)曲线得出的曲线下面积来测试这些描述符的预测性能。

材料与方法

这是一项对121例可疑发现进行的双盲回顾性研究,这些可疑发现来自2009年至2013年间接受检查的98名女性。术语基于2013版的BI-RADS。

结果

在121例可疑发现中,53例(43.8%)被证实为恶性病变,肿块和非肿块强化之间无显著差异(p = 0.846)。边缘呈毛刺状的肿块(71%)和圆形肿块(63%)的PPV最高,而节段性分布在非肿块强化中具有较高的PPV(80%)。动力学分析表现不佳,除了应用于肿块的3型曲线(PPV为73%)。两种模式的逻辑回归模型均具有显著性,尽管肿块的结果更好,特别是当纳入动力学评估时(p = 0.015;伪R(2)= 0.48;曲线下面积 = 90%)。

结论

一些BI-RADS MRI描述符在应用于BI-RADS 4类发现时具有较高的PPV和良好的预测性能,这通过ROC曲线和多变量分析得到了证明。这可能有助于对该类别进行未来的分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd6d/4938442/6d9faea201d9/rb-49-03-0137-g01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验