Suppr超能文献

临床样本中RNA病毒的无偏深度测序

Unbiased Deep Sequencing of RNA Viruses from Clinical Samples.

作者信息

Matranga Christian B, Gladden-Young Adrianne, Qu James, Winnicki Sarah, Nosamiefan Dolo, Levin Joshua Z, Sabeti Pardis C

机构信息

Broad Institute of MIT and Harvard;

Broad Institute of MIT and Harvard.

出版信息

J Vis Exp. 2016 Jul 2(113):54117. doi: 10.3791/54117.

Abstract

Here we outline a next-generation RNA sequencing protocol that enables de novo assemblies and intra-host variant calls of viral genomes collected from clinical and biological sources. The method is unbiased and universal; it uses random primers for cDNA synthesis and requires no prior knowledge of the viral sequence content. Before library construction, selective RNase H-based digestion is used to deplete unwanted RNA - including poly(rA) carrier and ribosomal RNA - from the viral RNA sample. Selective depletion improves both the data quality and the number of unique reads in viral RNA sequencing libraries. Moreover, a transposase-based 'tagmentation' step is used in the protocol as it reduces overall library construction time. The protocol has enabled rapid deep sequencing of over 600 Lassa and Ebola virus samples-including collections from both blood and tissue isolates-and is broadly applicable to other microbial genomics studies.

摘要

在此,我们概述了一种新一代RNA测序方案,该方案能够对从临床和生物学来源收集的病毒基因组进行从头组装和宿主内变异检测。该方法无偏向性且具有通用性;它使用随机引物进行cDNA合成,无需事先了解病毒序列内容。在文库构建之前,基于RNase H的选择性消化用于从病毒RNA样本中去除不需要的RNA,包括聚(rA)载体和核糖体RNA。选择性去除提高了病毒RNA测序文库中的数据质量和独特读数数量。此外,该方案中使用了基于转座酶的“标签化”步骤,因为它减少了文库构建的总时间。该方案已实现对600多个拉沙病毒和埃博拉病毒样本的快速深度测序,包括从血液和组织分离物中收集的样本,并且广泛适用于其他微生物基因组学研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验