Suppr超能文献

CRISPR/Cas9介导的人类CD34+细胞中镰状细胞突变的校正

CRISPR/Cas9-Mediated Correction of the Sickle Mutation in Human CD34+ cells.

作者信息

Hoban Megan D, Lumaquin Dianne, Kuo Caroline Y, Romero Zulema, Long Joseph, Ho Michelle, Young Courtney S, Mojadidi Michelle, Fitz-Gibbon Sorel, Cooper Aaron R, Lill Georgia R, Urbinati Fabrizia, Campo-Fernandez Beatriz, Bjurstrom Carmen F, Pellegrini Matteo, Hollis Roger P, Kohn Donald B

机构信息

Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California USA.

Division of Allergy and Immunology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California, USA.

出版信息

Mol Ther. 2016 Sep;24(9):1561-9. doi: 10.1038/mt.2016.148. Epub 2016 Jul 29.

Abstract

Targeted genome editing technology can correct the sickle cell disease mutation of the β-globin gene in hematopoietic stem cells. This correction supports production of red blood cells that synthesize normal hemoglobin proteins. Here, we demonstrate that Transcription Activator-Like Effector Nucleases (TALENs) and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 nuclease system can target DNA sequences around the sickle-cell mutation in the β-globin gene for site-specific cleavage and facilitate precise correction when a homologous donor template is codelivered. Several pairs of TALENs and multiple CRISPR guide RNAs were evaluated for both on-target and off-target cleavage rates. Delivery of the CRISPR/Cas9 components to CD34+ cells led to over 18% gene modification in vitro. Additionally, we demonstrate the correction of the sickle cell disease mutation in bone marrow derived CD34+ hematopoietic stem and progenitor cells from sickle cell disease patients, leading to the production of wild-type hemoglobin. These results demonstrate correction of the sickle mutation in patient-derived CD34+ cells using CRISPR/Cas9 technology.

摘要

靶向基因组编辑技术能够纠正造血干细胞中β-珠蛋白基因的镰状细胞病突变。这种纠正有助于合成正常血红蛋白蛋白的红细胞的生成。在此,我们证明转录激活样效应核酸酶(TALENs)和成簇规律间隔短回文重复序列(CRISPR)/Cas9核酸酶系统能够靶向β-珠蛋白基因中镰状细胞突变周围的DNA序列进行位点特异性切割,并且当共递送同源供体模板时能够促进精确纠正。对几对TALENs和多个CRISPR引导RNA的靶向切割率和脱靶切割率进行了评估。将CRISPR/Cas9组分递送至CD34+细胞在体外导致超过18%的基因修饰。此外,我们证明了在镰状细胞病患者来源的骨髓CD34+造血干细胞和祖细胞中镰状细胞病突变得到纠正,从而产生野生型血红蛋白。这些结果证明了使用CRISPR/Cas9技术在患者来源的CD34+细胞中纠正镰状突变。

相似文献

1
CRISPR/Cas9-Mediated Correction of the Sickle Mutation in Human CD34+ cells.
Mol Ther. 2016 Sep;24(9):1561-9. doi: 10.1038/mt.2016.148. Epub 2016 Jul 29.
2
4
CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells.
Nature. 2016 Nov 17;539(7629):384-389. doi: 10.1038/nature20134. Epub 2016 Nov 7.
5
Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells.
Blood. 2015 Apr 23;125(17):2597-604. doi: 10.1182/blood-2014-12-615948. Epub 2015 Mar 2.
7
Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus.
Blood. 2018 Apr 26;131(17):1960-1973. doi: 10.1182/blood-2017-10-811505. Epub 2018 Mar 8.
8
Genome editing of HBG1 and HBG2 to induce fetal hemoglobin.
Blood Adv. 2019 Nov 12;3(21):3379-3392. doi: 10.1182/bloodadvances.2019000820.

引用本文的文献

3
lipid nanoparticle delivery achieves robust editing in hematopoietic stem cells.
bioRxiv. 2025 May 12:2025.05.12.652147. doi: 10.1101/2025.05.12.652147.
4
Genome editing strategies for targeted correction of β-globin mutation in sickle cell disease: From bench to bedside.
Mol Ther. 2025 May 7;33(5):2154-2171. doi: 10.1016/j.ymthe.2025.03.047. Epub 2025 Mar 30.
5
Applications of Gene Editing and Nanotechnology in Stem Cell-Based Therapies for Human Diseases.
Stem Cell Rev Rep. 2025 Feb 27. doi: 10.1007/s12015-025-10857-0.
7
Hematopoietic Stem Cell Transplantation in Sickle Cell Disease: A Multidimentional Review.
Cell Transplant. 2024 Jan-Dec;33:9636897241246351. doi: 10.1177/09636897241246351.
8
correction of various β-thalassemia mutations in human hematopoietic stem cells.
Front Cell Dev Biol. 2024 Jan 25;11:1276890. doi: 10.3389/fcell.2023.1276890. eCollection 2023.
9
Genome editing for sickle cell disease: still time to correct?
Front Pediatr. 2023 Nov 2;11:1249275. doi: 10.3389/fped.2023.1249275. eCollection 2023.
10
Recent Advances in CRISPR/Cas9 Delivery Approaches for Therapeutic Gene Editing of Stem Cells.
Stem Cell Rev Rep. 2023 Nov;19(8):2576-2596. doi: 10.1007/s12015-023-10585-3. Epub 2023 Sep 18.

本文引用的文献

1
Delivery of Genome Editing Reagents to Hematopoietic Stem/Progenitor Cells.
Curr Protoc Stem Cell Biol. 2016 Feb 3;36:5B.4.1-5B.4.10. doi: 10.1002/9780470151808.sc05b04s36.
2
Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors.
Nat Biotechnol. 2015 Dec;33(12):1256-1263. doi: 10.1038/nbt.3408. Epub 2015 Nov 9.
3
Gene therapy returns to centre stage.
Nature. 2015 Oct 15;526(7573):351-60. doi: 10.1038/nature15818.
4
Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells.
Nat Biotechnol. 2015 Sep;33(9):985-989. doi: 10.1038/nbt.3290. Epub 2015 Jun 29.
5
Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining.
Nat Biotechnol. 2015 May;33(5):538-42. doi: 10.1038/nbt.3190. Epub 2015 Mar 23.
6
Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells.
Blood. 2015 Apr 23;125(17):2597-604. doi: 10.1182/blood-2014-12-615948. Epub 2015 Mar 2.
7
Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors.
Nat Biotechnol. 2015 Feb;33(2):175-8. doi: 10.1038/nbt.3127. Epub 2015 Jan 19.
8
GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases.
Nat Biotechnol. 2015 Feb;33(2):187-197. doi: 10.1038/nbt.3117. Epub 2014 Dec 16.
9
Determining the specificities of TALENs, Cas9, and other genome-editing enzymes.
Methods Enzymol. 2014;546:47-78. doi: 10.1016/B978-0-12-801185-0.00003-9.
10
More specific CRISPR editing.
Nat Methods. 2014 Jul;11(7):712. doi: 10.1038/nmeth.3020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验