Suppr超能文献

动态条件下星敏感器运动模糊星图的区域约束恢复方法

Region-confined restoration method for motion-blurred star image of the star sensor under dynamic conditions.

作者信息

Ma Liheng, Bernelli-Zazzera Franco, Jiang Guangwen, Wang Xingshu, Huang Zongsheng, Qin Shiqiao

出版信息

Appl Opt. 2016 Jun 10;55(17):4621-31. doi: 10.1364/AO.55.004621.

Abstract

Under dynamic conditions, the centroiding accuracy of the motion-blurred star image decreases and the number of identified stars reduces, which leads to the degradation of the attitude accuracy of the star sensor. To improve the attitude accuracy, a region-confined restoration method, which concentrates on the noise removal and signal to noise ratio (SNR) improvement of the motion-blurred star images, is proposed for the star sensor under dynamic conditions. A multi-seed-region growing technique with the kinematic recursive model for star image motion is given to find the star image regions and to remove the noise. Subsequently, a restoration strategy is employed in the extracted regions, taking the time consumption and SNR improvement into consideration simultaneously. Simulation results indicate that the region-confined restoration method is effective in removing noise and improving the centroiding accuracy. The identification rate and the average number of identified stars in the experiments verify the advantages of the region-confined restoration method.

摘要

在动态条件下,运动模糊恒星图像的质心定位精度下降,识别出的恒星数量减少,这导致星敏感器姿态精度下降。为提高姿态精度,针对动态条件下的星敏感器,提出一种区域受限恢复方法,该方法专注于运动模糊恒星图像的去噪和信噪比(SNR)提升。给出一种带有恒星图像运动运动学递归模型的多种子区域生长技术,用于找到恒星图像区域并去除噪声。随后,在提取区域中采用一种恢复策略,同时考虑时间消耗和信噪比提升。仿真结果表明,区域受限恢复方法在去噪和提高质心定位精度方面是有效的。实验中的识别率和识别出的恒星平均数量验证了区域受限恢复方法的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验