Vasudev Pranai, Jiang Jian-Hua, John Sajeev
Opt Express. 2016 Jun 27;24(13):14010-35. doi: 10.1364/OE.24.014010.
We demonstrate the possibility of room-temperature, thermal equilibrium Bose-Einstein condensation (BEC) of exciton-polaritons in a multiple quantum well (QW) system composed of InGaAs quantum wells surrounded by InP barriers, allowing for the emission of light near telecommunication wavelengths. The QWs are embedded in a cavity consisting of double slanted pore (SP2) photonic crystals composed of InP. We consider exciton-polaritons that result from the strong coupling between the multiple quantum well excitons and photons in the lowest planar guided mode within the photonic band gap (PBG) of the photonic crystal cavity. The collective coupling of three QWs results in a vacuum Rabi splitting of 3% of the bare exciton recombination energy. Due to the full three-dimensional PBG exhibited by the SP2 photonic crystal (16% gap to mid-gap frequency ratio), the radiative decay of polaritons is eliminated in all directions. Due to the short exciton-phonon scattering time in InGaAs quantum wells of 0.5 ps and the exciton non-radiative decay time of 200 ps at room temperature, polaritons can achieve thermal equilibrium with the host lattice to form an equilibrium BEC. Using a SP2 photonic crystal with a lattice constant of a = 516 nm, a unit cell height of 2a=730nm and a pore radius of 0.305a = 157 nm, light in the lowest planar guided mode is strongly localized in the central slab layer. The central slab layer consists of 3 nm InGaAs quantum wells with 7 nm InP barriers, in which excitons have a recombination energy of 0.944 eV, a binding energy of 7 meV and a Bohr radius of aB = 10 nm. We take the exciton recombination energy to be detuned 35 meV above the lowest guided photonic mode so that an exciton-polariton has a photonic fraction of approximately 97% per QW. This increases the energy range of small-effective-mass photonlike states and increases the critical temperature for the onset of a Bose-Einstein condensate. With three quantum wells in the central slab layer, the strong light confinement results in light-matter coupling strength of ℏΩ = 13.7 meV. Assuming an exciton density per QW of (15aB), well below the saturation density, in a 2-D box-trap with a side length of 10 to 500 µm, we predict thermal equilibrium Bose-Einstein condensation well above room temperature.
我们证明了在由InP势垒包围的InGaAs量子阱组成的多量子阱(QW)系统中,激子极化激元在室温下实现热平衡玻色-爱因斯坦凝聚(BEC)的可能性,该系统能够发射接近电信波长的光。量子阱嵌入在由InP组成的双倾斜孔(SP2)光子晶体构成的腔中。我们考虑的激子极化激元是由多量子阱激子与光子晶体腔光子带隙(PBG)内最低平面导模中的光子之间的强耦合产生的。三个量子阱的集体耦合导致真空拉比分裂为裸激子复合能量的3%。由于SP2光子晶体呈现出全三维PBG(带隙与中间带频率比为16%),极化激元在所有方向上的辐射衰减都被消除。由于InGaAs量子阱中激子-声子散射时间短至0.5 ps,且室温下激子非辐射衰减时间为200 ps,极化激元能够与主体晶格达到热平衡,从而形成平衡BEC。使用晶格常数a = 516 nm、单胞高度2a = 730 nm且孔半径为0.305a = 157 nm的SP2光子晶体,最低平面导模中的光被强烈限制在中央平板层中。中央平板层由具有7 nm InP势垒的3 nm InGaAs量子阱组成,其中激子的复合能量为0.944 eV,结合能为7 meV,玻尔半径aB = 10 nm。我们将激子复合能量调谐到比最低导波光模高35 meV,使得每个量子阱中的激子极化激元具有约97%的光子分数。这增加了小有效质量类光子态的能量范围,并提高了玻色-爱因斯坦凝聚开始的临界温度。在中央平板层中有三个量子阱时,强光限制导致光与物质的耦合强度为ℏΩ = 13.7 meV。假设每个量子阱中的激子密度为(15aB),远低于饱和密度,在边长为10至500 µm的二维盒形陷阱中,我们预测热平衡玻色-爱因斯坦凝聚温度远高于室温。