Suppr超能文献

基于根系的农业生产力和效率限制:农业系统背景

Root system-based limits to agricultural productivity and efficiency: the farming systems context.

作者信息

Thorup-Kristensen Kristian, Kirkegaard John

机构信息

Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.

CSIRO Agriculture, Canberra ACT 2601, Australia.

出版信息

Ann Bot. 2016 Oct 1;118(4):573-592. doi: 10.1093/aob/mcw122.

Abstract

Background There has been renewed global interest in both genetic and management strategies to improve root system function in order to improve agricultural productivity and minimize environmental damage. Improving root system capture of water and nutrients is an obvious strategy, yet few studies consider the important interactions between the genetic improvements proposed, and crop management at a system scale that will influence likely success. Scope To exemplify these interactions, the contrasting cereal-based farming systems of Denmark and Australia were used, where the improved uptake of water and nitrogen from deeper soil layers has been proposed to improve productivity and environmental outcomes in both systems. The analysis showed that water and nitrogen availability, especially in deeper layers (>1 m), was significantly affected by the preceding crops and management, and likely to interact strongly with deeper rooting as a specific trait of interest. Conclusions In the semi-arid Australian environment, grain yield impacts from storage and uptake of water from depth (>1 m) could be influenced to a stronger degree by preceding crop choice (0·42 t ha-1), pre-crop fallow management (0·65 t ha-1) and sowing date (0·63 t ha-1) than by current genetic differences in rooting depth (0·36 t ha-1). Matching of deep-rooted genotypes to management provided the greatest improvements related to deep water capture. In the wetter environment of Denmark, reduced leaching of N was the focus. Here the amount of N moving below the root zone was also influenced by previous crop choice or cover crop management (effects up to 85 kg N ha-1) and wheat crop sowing date (up to 45 kg ha-1), effects which over-ride the effects of differences in rooting depth among genotypes. These examples highlight the need to understand the farming system context and important G × E × M interactions in studies on proposed genetic improvements to root systems for improved productivity or environmental outcomes.

摘要

背景 全球对旨在改善根系功能以提高农业生产力并减少环境破坏的遗传和管理策略重新产生了兴趣。改善根系对水分和养分的吸收是一项显而易见的策略,但很少有研究考虑所提出的遗传改良与系统规模的作物管理之间的重要相互作用,而这种相互作用会影响可能的成功。范围 为了举例说明这些相互作用,采用了丹麦和澳大利亚基于谷物的对比耕作系统,在这两个系统中,都有人提出改善从较深土壤层吸收水分和氮素,以提高生产力和环境效益。分析表明,水分和氮素的有效性,尤其是在较深层(>1米),受到前茬作物和管理的显著影响,并且可能与作为感兴趣的特定性状的更深扎根强烈相互作用。结论 在半干旱的澳大利亚环境中,与当前根系深度的遗传差异(0·36吨/公顷)相比,前茬作物选择(0·42吨/公顷)、前茬作物休耕管理(0·65吨/公顷)和播种日期(0·63吨/公顷)对从深层(>1米)储存和吸收水分所产生的谷物产量影响更大。深根基因型与管理的匹配在深层水分捕获方面带来了最大的改善。在丹麦较湿润的环境中,减少氮素淋失是重点。在这里,向下移动到根区以下的氮素数量也受到先前作物选择或覆盖作物管理(影响高达85千克氮/公顷)以及小麦作物播种日期(高达45千克/公顷)的影响,这些影响超过了基因型之间根系深度差异的影响。这些例子凸显了在研究旨在改善根系以提高生产力或环境效益的遗传改良时,需要了解耕作系统背景以及重要的基因×环境×管理相互作用。

相似文献

2
Farming system context drives the value of deep wheat roots in semi-arid environments.
J Exp Bot. 2016 Jun;67(12):3665-81. doi: 10.1093/jxb/erw093. Epub 2016 Mar 14.
3
Increasing productivity by matching farming system management and genotype in water-limited environments.
J Exp Bot. 2010 Oct;61(15):4129-43. doi: 10.1093/jxb/erq245. Epub 2010 Aug 13.
5
Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment.
Environ Sci Pollut Res Int. 2021 Aug;28(32):43528-43543. doi: 10.1007/s11356-021-13700-4. Epub 2021 Apr 9.
6
Water productivity of rainfed maize and wheat: A local to global perspective.
Agric For Meteorol. 2018 Sep 15;259:364-373. doi: 10.1016/j.agrformet.2018.05.019.
7
A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity.
Glob Chang Biol. 2019 Aug;25(8):2530-2543. doi: 10.1111/gcb.14644. Epub 2019 May 13.
8
Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops.
J Exp Bot. 2012 May;63(9):3485-98. doi: 10.1093/jxb/ers111. Epub 2012 May 2.
9
Evaluation of G × E × M Interactions to Increase Harvest Index and Yield of Early Sown Wheat.
Front Plant Sci. 2020 Jul 10;11:994. doi: 10.3389/fpls.2020.00994. eCollection 2020.
10
Managing nitrogen through cover crop species selection in the U.S. mid-Atlantic.
PLoS One. 2019 Apr 12;14(4):e0215448. doi: 10.1371/journal.pone.0215448. eCollection 2019.

引用本文的文献

2
Root phenotypes for improved nitrogen capture.
Plant Soil. 2024;502(1-2):31-85. doi: 10.1007/s11104-023-06301-2. Epub 2023 Oct 4.
3
Transcriptomic and Hormonal Changes in Wheat Roots Enhance Growth under Moderate Soil Drying.
Int J Mol Sci. 2024 Aug 23;25(17):9157. doi: 10.3390/ijms25179157.
7
Effect of crop rotational position and nitrogen supply on root development and yield formation of winter wheat.
Front Plant Sci. 2023 Oct 23;14:1265994. doi: 10.3389/fpls.2023.1265994. eCollection 2023.
8
Auxin-producing bacteria promote barley rhizosheath formation.
Nat Commun. 2023 Sep 19;14(1):5800. doi: 10.1038/s41467-023-40916-4.
9
Cover cropping impacts on soil water and carbon in dryland cropping system.
PLoS One. 2023 Jun 5;18(6):e0286748. doi: 10.1371/journal.pone.0286748. eCollection 2023.

本文引用的文献

1
The role of root architectural traits in adaptation of wheat to water-limited environments.
Funct Plant Biol. 2006 Sep;33(9):823-837. doi: 10.1071/FP06055.
2
Genotypic differences in deep water extraction associated with drought tolerance in wheat.
Funct Plant Biol. 2014 Oct;41(11):1078-1086. doi: 10.1071/FP14094.
3
Large root systems: are they useful in adapting wheat to dry environments?
Funct Plant Biol. 2011 Jun;38(5):347-354. doi: 10.1071/FP11031.
4
Farming system context drives the value of deep wheat roots in semi-arid environments.
J Exp Bot. 2016 Jun;67(12):3665-81. doi: 10.1093/jxb/erw093. Epub 2016 Mar 14.
6
High-throughput phenotyping of seminal root traits in wheat.
Plant Methods. 2015 Mar 1;11:13. doi: 10.1186/s13007-015-0055-9. eCollection 2015.
7
The kill date as a management tool for cover cropping success.
PLoS One. 2014 Oct 8;9(10):e109587. doi: 10.1371/journal.pone.0109587. eCollection 2014.
9
Quantifying relationships between rooting traits and water uptake under drought in Mediterranean barley and durum wheat.
J Integr Plant Biol. 2014 May;56(5):455-69. doi: 10.1111/jipb.12109. Epub 2013 Nov 25.
10
How to study deep roots-and why it matters.
Front Plant Sci. 2013 Aug 13;4:299. doi: 10.3389/fpls.2013.00299. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验