Suppr超能文献

一种用于量化DEER光谱中实验噪声不确定性的贝叶斯方法。

A Bayesian approach to quantifying uncertainty from experimental noise in DEER spectroscopy.

作者信息

Edwards Thomas H, Stoll Stefan

机构信息

Department of Chemistry, University of Washington, Seattle, WA 98103, United States.

出版信息

J Magn Reson. 2016 Sep;270:87-97. doi: 10.1016/j.jmr.2016.06.021. Epub 2016 Jul 2.

Abstract

Double Electron-Electron Resonance (DEER) spectroscopy is a solid-state pulse Electron Paramagnetic Resonance (EPR) experiment that measures distances between unpaired electrons, most commonly between protein-bound spin labels separated by 1.5-8nm. From the experimental data, a distance distribution P(r) is extracted using Tikhonov regularization. The disadvantage of this method is that it does not directly provide error bars for the resulting P(r), rendering correct interpretation difficult. Here we introduce a Bayesian statistical approach that quantifies uncertainty in P(r) arising from noise and numerical regularization. This method provides credible intervals (error bars) of P(r) at each r. This allows practitioners to answer whether or not small features are significant, whether or not apparent shoulders are significant, and whether or not two distance distributions are significantly different from each other. In addition, the method quantifies uncertainty in the regularization parameter.

摘要

双电子-电子共振(DEER)光谱是一种固态脉冲电子顺磁共振(EPR)实验,用于测量未成对电子之间的距离,最常见的是测量由1.5-8纳米隔开的与蛋白质结合的自旋标记之间的距离。从实验数据中,使用蒂霍诺夫正则化提取距离分布P(r)。该方法的缺点是它不能直接为所得的P(r)提供误差线,这使得正确解释变得困难。在这里,我们引入一种贝叶斯统计方法,该方法量化了由噪声和数值正则化引起的P(r)中的不确定性。该方法在每个r处提供P(r)的可信区间(误差线)。这使从业者能够回答小特征是否显著、明显的肩部是否显著以及两个距离分布是否彼此显著不同。此外,该方法还量化了正则化参数中的不确定性。

相似文献

1
A Bayesian approach to quantifying uncertainty from experimental noise in DEER spectroscopy.
J Magn Reson. 2016 Sep;270:87-97. doi: 10.1016/j.jmr.2016.06.021. Epub 2016 Jul 2.
4
The determination of pair distance distributions by pulsed ESR using Tikhonov regularization.
J Magn Reson. 2005 Feb;172(2):279-95. doi: 10.1016/j.jmr.2004.10.012.
5
Compactness regularization in the analysis of dipolar EPR spectroscopy data.
J Magn Reson. 2022 Jun;339:107218. doi: 10.1016/j.jmr.2022.107218. Epub 2022 Apr 9.
6
Confidence Analysis of DEER Data and Its Structural Interpretation with Ensemble-Biased Metadynamics.
Biophys J. 2018 Oct 2;115(7):1200-1216. doi: 10.1016/j.bpj.2018.08.008. Epub 2018 Aug 16.
7
Dipolar pathways in multi-spin and multi-dimensional dipolar EPR spectroscopy.
Phys Chem Chem Phys. 2022 Sep 28;24(37):22645-22660. doi: 10.1039/d2cp03048a.
8
230/115 GHz Electron Paramagnetic Resonance/Double Electron-Electron Resonance Spectroscopy.
Methods Enzymol. 2015;563:95-118. doi: 10.1016/bs.mie.2015.07.001. Epub 2015 Aug 21.
9
A Straightforward Approach to the Analysis of Double Electron-Electron Resonance Data.
Methods Enzymol. 2015;563:531-67. doi: 10.1016/bs.mie.2015.07.031. Epub 2015 Sep 15.
10
General regularization framework for DEER spectroscopy.
J Magn Reson. 2019 Mar;300:28-40. doi: 10.1016/j.jmr.2019.01.008. Epub 2019 Jan 19.

引用本文的文献

1
Q-Band Double Quantum Coherence ESR for Sensitive Nitroxide-Based Distance Measurements.
J Phys Chem B. 2025 Jul 17;129(28):7108-7118. doi: 10.1021/acs.jpcb.5c03169. Epub 2025 Jul 7.
2
Localized Reconstruction of Multimodal Distance Distribution from DEER Data of Biopolymers.
bioRxiv. 2025 Jan 3:2025.01.02.631084. doi: 10.1101/2025.01.02.631084.
3
Expanded Functionality and Portability for the Colvars Library.
J Phys Chem B. 2024 Nov 14;128(45):11108-11123. doi: 10.1021/acs.jpcb.4c05604. Epub 2024 Nov 5.
4
Bayesian Probabilistic Inference of Nonparametric Distance Distributions in DEER Spectroscopy.
J Phys Chem A. 2024 Oct 17;128(41):9071-9081. doi: 10.1021/acs.jpca.4c05056. Epub 2024 Oct 4.
7
Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET.
Nat Commun. 2022 Jul 29;13(1):4396. doi: 10.1038/s41467-022-31945-6.
8
OOP-ESEEM Spectroscopy: Accuracies of Distances of Spin-Correlated Radical Pairs in Biomolecules.
Front Mol Biosci. 2022 Jun 23;9:890826. doi: 10.3389/fmolb.2022.890826. eCollection 2022.
9
Doubly spin-labeled nanodiscs to improve structural determination of membrane proteins by ESR.
RSC Adv. 2019 Mar 19;9(16):9014-9021. doi: 10.1039/c9ra00896a. eCollection 2019 Mar 15.
10
Dipolar pathways in dipolar EPR spectroscopy.
Phys Chem Chem Phys. 2022 Jan 26;24(4):2504-2520. doi: 10.1039/d1cp03305k.

本文引用的文献

1
Determination of End-to-End Distances in a Series of TEMPO Diradicals of up to 2.8 nm Length with a New Four-Pulse Double Electron Electron Resonance Experiment.
Angew Chem Int Ed Engl. 1998 Nov 2;37(20):2833-2837. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2833::AID-ANIE2833>3.0.CO;2-7.
2
Steric trapping reveals a cooperativity network in the intramembrane protease GlpG.
Nat Chem Biol. 2016 May;12(5):353-360. doi: 10.1038/nchembio.2048. Epub 2016 Mar 21.
3
Parkinson's Protein α-Synuclein Binds Efficiently and with a Novel Conformation to Two Natural Membrane Mimics.
PLoS One. 2015 Nov 20;10(11):e0142795. doi: 10.1371/journal.pone.0142795. eCollection 2015.
4
Determining protein structures by combining semireliable data with atomistic physical models by Bayesian inference.
Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):6985-90. doi: 10.1073/pnas.1506788112. Epub 2015 May 18.
6
A primer on Bayesian inference for biophysical systems.
Biophys J. 2015 May 5;108(9):2103-13. doi: 10.1016/j.bpj.2015.03.042.
7
Structural mechanism for the regulation of HCN ion channels by the accessory protein TRIP8b.
Structure. 2015 Apr 7;23(4):734-44. doi: 10.1016/j.str.2015.02.007. Epub 2015 Mar 19.
8
Bayesian inference of conformational state populations from computational models and sparse experimental observables.
J Comput Chem. 2014 Nov 15;35(30):2215-24. doi: 10.1002/jcc.23738. Epub 2014 Sep 24.
9
Double electron-electron resonance reveals cAMP-induced conformational change in HCN channels.
Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9816-21. doi: 10.1073/pnas.1405371111. Epub 2014 Jun 23.
10
The role of select subtype polymorphisms on HIV-1 protease conformational sampling and dynamics.
J Biol Chem. 2014 Jun 13;289(24):17203-14. doi: 10.1074/jbc.M114.571836. Epub 2014 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验