Zablotskiy Sergey V, Ivanov Victor A, Paul Wolfgang
Faculty of Physics, Moscow State University, Moscow 119991, Russia.
Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany.
Phys Rev E. 2016 Jun;93(6):063303. doi: 10.1103/PhysRevE.93.063303. Epub 2016 Jun 9.
Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g(E), of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g(E_{1},E_{2}). We show when and why care has to be exercised when obtaining the microcanonical density of states g(E_{1}+E_{2}) from g(E_{1},E_{2}).
随机近似蒙特卡罗(SAMC)已被确立为一种有数学依据的强大的平直方图蒙特卡罗方法,用于确定模型系统的态密度g(E)。我们在此展示如何将其推广用于确定定义在统计力学系统微观状态空间上的宏观或介观变量的多维概率分布(或等效的态密度)。这将该方法确立为对模型系统进行粗粒化的一种系统方法,或者换句话说,用于对模型执行重整化群步骤。我们用这种语言讨论了卡达诺夫块自旋变换的公式以及聚合物模型的粗粒化过程。我们还将其应用于二维态密度文献中的一个标准案例,其中存在两种相互竞争的能量效应g(E₁,E₂)。我们展示了从g(E₁,E₂)获得微正则态密度g(E₁ + E₂)时何时以及为何必须谨慎行事。