Suppr超能文献

跨物种分析揭示神经干细胞祖细胞背景下H3K27me3和H4K20me3的复杂性。

Cross-species Analyses Unravel the Complexity of H3K27me3 and H4K20me3 in the Context of Neural Stem Progenitor Cells.

作者信息

Rhodes Christopher T, Sandstrom Richard S, Huang Shu-Wei Angela, Wang Yufeng, Schotta Gunnar, Berger Mitchel S, Lin Chin-Hsing Annie

机构信息

Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA.

Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.

出版信息

Neuroepigenetics. 2016 Jun;6:10-25. doi: 10.1016/j.nepig.2016.04.001. Epub 2016 May 3.

Abstract

Neural stem progenitor cells (NSPCs) in the human subventricular zone (SVZ) potentially contribute to life-long neurogenesis, yet subtypes of glioblastoma multiforme (GBM) contain NSPC signatures that highlight the importance of cell fate regulation. Among numerous regulatory mechanisms, the post-translational methylations onto histone tails are crucial regulator of cell fate. The work presented here focuses on the role of two repressive chromatin marks tri-methylations on histone H3 lysine 27 (H3K27me3) and histone H4 lysine 20 (H4K20me3) in the adult NSPC within the SVZ. To best model healthy human NSPCs as they exist for epigenetic profiling of H3K27me3 and H4K20me3, we utilized NSPCs isolated from the adult SVZ of baboon brain () with brain structure and genomic level similar to human. The putative role of H3K27me3 in normal NSPCs predominantly falls into the regulation of gene expression, cell cycle, and differentiation, whereas H4K20me3 is involved in DNA replication/repair, metabolism, and cell cycle. Using conditional knock-out mouse models to diminish and responsible for H3K27me3 and H4K20me3, respectively, we found that both repressive marks have irrefutable function for cell cycle regulation in the NSPC population. While both EZH2/H3K27me3 and Suv4-20h/H4K20me3 have implication in cancers, our comparative genomics approach between healthy NSPCs and human GBM specimens revealed that substantial sets of genes enriched with H3K27me3 and H4K20me3 in the NSPCs are altered in the human GBM. In sum, our integrated analyses across species highlight important roles of H3K27me3 and H4K20me3 in normal and disease conditions in the context of NSPC.

摘要

人类脑室下区(SVZ)中的神经干祖细胞(NSPCs)可能对终生神经发生有贡献,然而多形性胶质母细胞瘤(GBM)的亚型含有NSPC特征,这突出了细胞命运调控的重要性。在众多调控机制中,组蛋白尾部的翻译后甲基化是细胞命运的关键调节因子。本文介绍的工作聚焦于两种抑制性染色质标记——组蛋白H3赖氨酸27三甲基化(H3K27me3)和组蛋白H4赖氨酸20三甲基化(H4K20me3)在SVZ成年NSPC中的作用。为了最好地模拟健康人类NSPCs以便对H3K27me3和H4K20me3进行表观遗传分析,我们利用了从狒狒脑成年SVZ分离的NSPCs(狒狒脑的结构和基因组水平与人类相似)。H3K27me3在正常NSPCs中的假定作用主要涉及基因表达、细胞周期和分化的调控,而H4K20me3则参与DNA复制/修复、代谢和细胞周期。使用条件性敲除小鼠模型分别减少负责H3K27me3和H4K20me3的EZH2和Suv4 - 20h,我们发现这两种抑制性标记对NSPC群体中的细胞周期调控都有不可辩驳的作用。虽然EZH2/H3K27me3和Suv4 - 20h/H4K20me3都与癌症有关,但我们在健康NSPCs和人类GBM标本之间的比较基因组学方法表明,NSPCs中富含H3K27me3和H4K20me3的大量基因集在人类GBM中发生了改变。总之,我们跨物种的综合分析突出了H3K27me3和H4K20me3在NSPC背景下正常和疾病状态中的重要作用。

相似文献

1
Cross-species Analyses Unravel the Complexity of H3K27me3 and H4K20me3 in the Context of Neural Stem Progenitor Cells.
Neuroepigenetics. 2016 Jun;6:10-25. doi: 10.1016/j.nepig.2016.04.001. Epub 2016 May 3.
2
Region specific knock-out reveals distinct roles of chromatin modifiers in adult neurogenic niches.
Cell Cycle. 2018;17(3):377-389. doi: 10.1080/15384101.2018.1426417. Epub 2018 Feb 19.
4
The SUV4-20H Histone Methyltransferases in Health and Disease.
Int J Mol Sci. 2022 Apr 25;23(9):4736. doi: 10.3390/ijms23094736.
5
Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination.
J Cell Biol. 2007 Sep 10;178(6):925-36. doi: 10.1083/jcb.200703081.
6
Comparative analyses identify molecular signature of MRI-classified SVZ-associated glioblastoma.
Cell Cycle. 2017 Apr 18;16(8):765-775. doi: 10.1080/15384101.2017.1295186. Epub 2017 Feb 22.
7
Histone Methylations Define Neural Stem/Progenitor Cell Subtypes in the Mouse Subventricular Zone.
Mol Neurobiol. 2020 Feb;57(2):997-1008. doi: 10.1007/s12035-019-01777-5. Epub 2019 Oct 25.
8
Loss of SUV420H2-Dependent Chromatin Compaction Drives Right-Sided Colon Cancer Progression.
Gastroenterology. 2023 Feb;164(2):214-227. doi: 10.1053/j.gastro.2022.10.036. Epub 2022 Nov 17.
9
Specificity of the SUV4-20H1 and SUV4-20H2 protein lysine methyltransferases and methylation of novel substrates.
J Mol Biol. 2016 Jun 5;428(11):2344-2358. doi: 10.1016/j.jmb.2016.04.015. Epub 2016 Apr 20.
10
Role of the histone methyltransferases Ezh2 and Suv4-20h1/Suv4-20h2 in neurogenesis.
Neural Regen Res. 2023 Mar;18(3):469-473. doi: 10.4103/1673-5374.350188.

引用本文的文献

1
Takeaways from meta-analysis: indications of combinational treatments for glioblastoma.
J Neurooncol. 2025 Aug 21. doi: 10.1007/s11060-025-05205-8.
2
The function of histone methylation and acetylation regulators in GBM pathophysiology.
Front Oncol. 2023 May 2;13:1144184. doi: 10.3389/fonc.2023.1144184. eCollection 2023.
3
Mechanism of KMT5B haploinsufficiency in neurodevelopment in humans and mice.
Sci Adv. 2023 Mar 10;9(10):eade1463. doi: 10.1126/sciadv.ade1463.
4
The SUV4-20H Histone Methyltransferases in Health and Disease.
Int J Mol Sci. 2022 Apr 25;23(9):4736. doi: 10.3390/ijms23094736.
6
Is There a Histone Code for Cellular Quiescence?
Front Cell Dev Biol. 2021 Oct 29;9:739780. doi: 10.3389/fcell.2021.739780. eCollection 2021.
7
Methylation of histone 4's lysine 20: a critical analysis of the state of the field.
Physiol Genomics. 2021 Jan 1;53(1):22-32. doi: 10.1152/physiolgenomics.00128.2020. Epub 2020 Nov 16.
8
The Mitochondrial Protein VDAC1 at the Crossroads of Cancer Cell Metabolism: The Epigenetic Link.
Cancers (Basel). 2020 Apr 22;12(4):1031. doi: 10.3390/cancers12041031.
9
Histone 4 Lysine 20 Methylation: A Case for Neurodevelopmental Disease.
Biology (Basel). 2019 Mar 3;8(1):11. doi: 10.3390/biology8010011.
10
Region specific knock-out reveals distinct roles of chromatin modifiers in adult neurogenic niches.
Cell Cycle. 2018;17(3):377-389. doi: 10.1080/15384101.2018.1426417. Epub 2018 Feb 19.

本文引用的文献

1
Epigenetic regulation of stemness maintenance in the neurogenic niches.
World J Stem Cells. 2015 May 26;7(4):700-10. doi: 10.4252/wjsc.v7.i4.700.
2
EZH2 protects glioma stem cells from radiation-induced cell death in a MELK/FOXM1-dependent manner.
Stem Cell Reports. 2015 Feb 10;4(2):226-38. doi: 10.1016/j.stemcr.2014.12.006. Epub 2015 Jan 15.
3
Prolonged Ezh2 Depletion in Glioblastoma Causes a Robust Switch in Cell Fate Resulting in Tumor Progression.
Cell Rep. 2015 Jan 20;10(3):383-397. doi: 10.1016/j.celrep.2014.12.028. Epub 2015 Jan 15.
5
Unlocking epigenetic codes in neurogenesis.
Genes Dev. 2014 Jun 15;28(12):1253-71. doi: 10.1101/gad.241547.114.
6
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma.
Science. 2014 Jun 20;344(6190):1396-401. doi: 10.1126/science.1254257. Epub 2014 Jun 12.
7
Distinct and separable roles for EZH2 in neurogenic astroglia.
Elife. 2014 May 27;3:e02439. doi: 10.7554/eLife.02439.
9
Ezh2 regulates adult hippocampal neurogenesis and memory.
J Neurosci. 2014 Apr 9;34(15):5184-99. doi: 10.1523/JNEUROSCI.4129-13.2014.
10
Glioblastoma multiforme: a look inside its heterogeneous nature.
Cancers (Basel). 2014 Jan 27;6(1):226-39. doi: 10.3390/cancers6010226.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验