Rhodes Christopher T, Sandstrom Richard S, Huang Shu-Wei Angela, Wang Yufeng, Schotta Gunnar, Berger Mitchel S, Lin Chin-Hsing Annie
Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA.
Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
Neuroepigenetics. 2016 Jun;6:10-25. doi: 10.1016/j.nepig.2016.04.001. Epub 2016 May 3.
Neural stem progenitor cells (NSPCs) in the human subventricular zone (SVZ) potentially contribute to life-long neurogenesis, yet subtypes of glioblastoma multiforme (GBM) contain NSPC signatures that highlight the importance of cell fate regulation. Among numerous regulatory mechanisms, the post-translational methylations onto histone tails are crucial regulator of cell fate. The work presented here focuses on the role of two repressive chromatin marks tri-methylations on histone H3 lysine 27 (H3K27me3) and histone H4 lysine 20 (H4K20me3) in the adult NSPC within the SVZ. To best model healthy human NSPCs as they exist for epigenetic profiling of H3K27me3 and H4K20me3, we utilized NSPCs isolated from the adult SVZ of baboon brain () with brain structure and genomic level similar to human. The putative role of H3K27me3 in normal NSPCs predominantly falls into the regulation of gene expression, cell cycle, and differentiation, whereas H4K20me3 is involved in DNA replication/repair, metabolism, and cell cycle. Using conditional knock-out mouse models to diminish and responsible for H3K27me3 and H4K20me3, respectively, we found that both repressive marks have irrefutable function for cell cycle regulation in the NSPC population. While both EZH2/H3K27me3 and Suv4-20h/H4K20me3 have implication in cancers, our comparative genomics approach between healthy NSPCs and human GBM specimens revealed that substantial sets of genes enriched with H3K27me3 and H4K20me3 in the NSPCs are altered in the human GBM. In sum, our integrated analyses across species highlight important roles of H3K27me3 and H4K20me3 in normal and disease conditions in the context of NSPC.
人类脑室下区(SVZ)中的神经干祖细胞(NSPCs)可能对终生神经发生有贡献,然而多形性胶质母细胞瘤(GBM)的亚型含有NSPC特征,这突出了细胞命运调控的重要性。在众多调控机制中,组蛋白尾部的翻译后甲基化是细胞命运的关键调节因子。本文介绍的工作聚焦于两种抑制性染色质标记——组蛋白H3赖氨酸27三甲基化(H3K27me3)和组蛋白H4赖氨酸20三甲基化(H4K20me3)在SVZ成年NSPC中的作用。为了最好地模拟健康人类NSPCs以便对H3K27me3和H4K20me3进行表观遗传分析,我们利用了从狒狒脑成年SVZ分离的NSPCs(狒狒脑的结构和基因组水平与人类相似)。H3K27me3在正常NSPCs中的假定作用主要涉及基因表达、细胞周期和分化的调控,而H4K20me3则参与DNA复制/修复、代谢和细胞周期。使用条件性敲除小鼠模型分别减少负责H3K27me3和H4K20me3的EZH2和Suv4 - 20h,我们发现这两种抑制性标记对NSPC群体中的细胞周期调控都有不可辩驳的作用。虽然EZH2/H3K27me3和Suv4 - 20h/H4K20me3都与癌症有关,但我们在健康NSPCs和人类GBM标本之间的比较基因组学方法表明,NSPCs中富含H3K27me3和H4K20me3的大量基因集在人类GBM中发生了改变。总之,我们跨物种的综合分析突出了H3K27me3和H4K20me3在NSPC背景下正常和疾病状态中的重要作用。