Phonon Optimized Engineered Materials (POEM) Center and Nano-Device Laboratory (NDL), Department of Electrical and Computer Engineering, University of California - Riverside, Riverside, California 92521, USA.
Nanoscale. 2016 Aug 14;8(30):14608-16. doi: 10.1039/c6nr03470e. Epub 2016 Jul 19.
We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ∼7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 10(10) cm(-2) to 1.8 × 10(11) cm(-2) the thermal conductivity decreases from ∼(1.8 ± 0.2) × 10(3) W mK(-1) to ∼(4.0 ± 0.2) × 10(2) W mK(-1) near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ∼400 W mK(-1). The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.
我们研究了悬浮石墨烯的热导率随缺陷密度 ND 的变化,这种变化是通过可控的方式引入的。使用化学气相沉积合成高质量的石墨烯层,将其转移到透射电子显微镜网格上,并悬停在大约 7.5μm 大小的正方形孔上方。通过用低能电子束(20keV)辐照石墨烯来产生缺陷,并通过拉曼 D 峰与 G 峰强度比来定量。当缺陷密度从 2.0×10(10)cm(-2)增加到 1.8×10(11)cm(-2)时,在室温附近,热导率从大约(1.8±0.2)×10(3)W mK(-1)降低到大约(4.0±0.2)×10(2)W mK(-1)。在更高的缺陷密度下,热导率在一个相对较高的值约为 400W mK(-1)时表现出有趣的饱和型行为。通过玻尔兹曼输运方程和分子动力学模拟分析了热导率与缺陷密度的关系。这些结果对于理解二维系统中声子-点缺陷散射以及石墨烯在热管理中的实际应用非常重要。