Suppr超能文献

USP28-53BP1-p53-p21信号轴在中心体丢失或有丝分裂延长后会阻止细胞生长。

A USP28-53BP1-p53-p21 signaling axis arrests growth after centrosome loss or prolonged mitosis.

作者信息

Lambrus Bramwell G, Daggubati Vikas, Uetake Yumi, Scott Phillip M, Clutario Kevin M, Sluder Greenfield, Holland Andrew J

机构信息

Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205.

Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655.

出版信息

J Cell Biol. 2016 Jul 18;214(2):143-53. doi: 10.1083/jcb.201604054.

Abstract

Precise regulation of centrosome number is critical for accurate chromosome segregation and the maintenance of genomic integrity. In nontransformed cells, centrosome loss triggers a p53-dependent surveillance pathway that protects against genome instability by blocking cell growth. However, the mechanism by which p53 is activated in response to centrosome loss remains unknown. Here, we have used genome-wide CRISPR/Cas9 knockout screens to identify a USP28-53BP1-p53-p21 signaling axis at the core of the centrosome surveillance pathway. We show that USP28 and 53BP1 act to stabilize p53 after centrosome loss and demonstrate this function to be independent of their previously characterized role in the DNA damage response. Surprisingly, the USP28-53BP1-p53-p21 signaling pathway is also required to arrest cell growth after a prolonged prometaphase. We therefore propose that centrosome loss or a prolonged mitosis activate a common signaling pathway that acts to prevent the growth of cells that have an increased propensity for mitotic errors.

摘要

中心体数量的精确调控对于准确的染色体分离和基因组完整性的维持至关重要。在未转化的细胞中,中心体缺失会触发一条依赖p53的监测途径,该途径通过阻止细胞生长来防止基因组不稳定。然而,p53在响应中心体缺失时被激活的机制仍然未知。在这里,我们使用全基因组CRISPR/Cas9敲除筛选来鉴定位于中心体监测途径核心的USP28-53BP1-p53-p21信号轴。我们表明,USP28和53BP1在中心体缺失后起到稳定p53的作用,并证明该功能独立于它们先前在DNA损伤反应中所表征的作用。令人惊讶的是,在延长的前中期之后,USP28-53BP1-p53-p21信号通路也是阻止细胞生长所必需的。因此,我们提出中心体缺失或延长的有丝分裂会激活一条共同的信号通路,该通路的作用是阻止有丝分裂错误倾向增加的细胞生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5f4/4949452/03bdc65a203c/JCB_201604054_Fig1.jpg

相似文献

1
A USP28-53BP1-p53-p21 signaling axis arrests growth after centrosome loss or prolonged mitosis.
J Cell Biol. 2016 Jul 18;214(2):143-53. doi: 10.1083/jcb.201604054.
4
A New Mode of Mitotic Surveillance.
Trends Cell Biol. 2017 May;27(5):314-321. doi: 10.1016/j.tcb.2017.01.004. Epub 2017 Feb 7.
5
Centrosome defects cause microcephaly by activating the 53BP1-USP28-TP53 mitotic surveillance pathway.
EMBO J. 2021 Jan 4;40(1):e106118. doi: 10.15252/embj.2020106118. Epub 2020 Nov 23.
7
53BP1 Integrates DNA Repair and p53-Dependent Cell Fate Decisions via Distinct Mechanisms.
Mol Cell. 2016 Oct 6;64(1):51-64. doi: 10.1016/j.molcel.2016.08.002. Epub 2016 Aug 18.
8
Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest.
Nat Cell Biol. 2007 Feb;9(2):160-70. doi: 10.1038/ncb1529.
9
Plk1-mediated stabilization of 53BP1 through USP7 regulates centrosome positioning to maintain bipolarity.
Oncogene. 2017 Feb 16;36(7):966-978. doi: 10.1038/onc.2016.263. Epub 2016 Aug 1.
10
Control of cell proliferation by memories of mitosis.
Science. 2024 Mar 29;383(6690):1441-1448. doi: 10.1126/science.add9528. Epub 2024 Mar 28.

引用本文的文献

2
WIP1 mutations suppress DNA damage triggered bypass of the mitotic timer.
EMBO J. 2025 Jun 23. doi: 10.1038/s44318-025-00495-0.
3
M phase-specific generation of supernumerary centrioles in cancer cells.
Mol Biol Cell. 2025 Jun 1;36(6):ar65. doi: 10.1091/mbc.E24-08-0386. Epub 2025 Apr 23.
6
Robust p53 phenotypes and prospective downstream targets in telomerase-immortalized human cells.
Oncotarget. 2025 Feb 18;16:79-100. doi: 10.18632/oncotarget.28690.
7
MDM2 functions as a timer reporting the length of mitosis.
Nat Cell Biol. 2025 Feb;27(2):262-272. doi: 10.1038/s41556-024-01592-8. Epub 2025 Jan 9.
8
Chromosome mis-segregation triggers cell cycle arrest through a mechanosensitive nuclear envelope checkpoint.
Nat Cell Biol. 2025 Jan;27(1):73-86. doi: 10.1038/s41556-024-01565-x. Epub 2025 Jan 8.
9
A Method for Analyzing Acentrosomal Mitotic Spindles in Human Cells.
Methods Mol Biol. 2025;2872:221-231. doi: 10.1007/978-1-0716-4224-5_15.
10
Genetic Engineering and Screening Using Base Editing and Inducible Gene Knockout.
Methods Mol Biol. 2025;2872:167-187. doi: 10.1007/978-1-0716-4224-5_12.

本文引用的文献

1
Centrosome function and assembly in animal cells.
Nat Rev Mol Cell Biol. 2015 Oct;16(10):611-24. doi: 10.1038/nrm4062. Epub 2015 Sep 16.
2
p53 protects against genome instability following centriole duplication failure.
J Cell Biol. 2015 Jul 6;210(1):63-77. doi: 10.1083/jcb.201502089.
3
Binding of STIL to Plk4 activates kinase activity to promote centriole assembly.
J Cell Biol. 2015 Jun 22;209(6):863-78. doi: 10.1083/jcb.201502088.
4
Cell biology. Reversible centriole depletion with an inhibitor of Polo-like kinase 4.
Science. 2015 Jun 5;348(6239):1155-60. doi: 10.1126/science.aaa5111. Epub 2015 Apr 30.
5
Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis.
Cell. 2015 Mar 12;160(6):1246-60. doi: 10.1016/j.cell.2015.02.038. Epub 2015 Mar 5.
7
Cortical neurogenesis in the absence of centrioles.
Nat Neurosci. 2014 Nov;17(11):1528-35. doi: 10.1038/nn.3831. Epub 2014 Oct 5.
8
Cytokinesis failure triggers hippo tumor suppressor pathway activation.
Cell. 2014 Aug 14;158(4):833-848. doi: 10.1016/j.cell.2014.06.029.
9
Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo.
Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):E1491-500. doi: 10.1073/pnas.1400568111. Epub 2014 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验