King Leandra, Wakeley John
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138.
Genetics. 2016 Sep;204(1):249-57. doi: 10.1534/genetics.115.185751. Epub 2016 Jul 20.
We demonstrate the advantages of using information at many unlinked loci to better calibrate estimates of the time to the most recent common ancestor (TMRCA) at a given locus. To this end, we apply a simple empirical Bayes method to estimate the TMRCA. This method is both asymptotically optimal, in the sense that the estimator converges to the true value when the number of unlinked loci for which we have information is large, and has the advantage of not making any assumptions about demographic history. The algorithm works as follows: we first split the sample at each locus into inferred left and right clades to obtain many estimates of the TMRCA, which we can average to obtain an initial estimate of the TMRCA. We then use nucleotide sequence data from other unlinked loci to form an empirical distribution that we can use to improve this initial estimate.
我们展示了利用多个不连锁位点的信息来更好地校准给定位点上最近共同祖先时间(TMRCA)估计值的优势。为此,我们应用一种简单的经验贝叶斯方法来估计TMRCA。该方法在渐近最优意义上,即当我们拥有信息的不连锁位点数量很大时,估计器会收敛到真实值,并且具有不做任何关于群体历史假设的优势。该算法如下工作:我们首先在每个位点将样本划分为推断的左支和右支,以获得TMRCA的多个估计值,我们可以对这些估计值求平均以获得TMRCA的初始估计值。然后我们使用来自其他不连锁位点的核苷酸序列数据来形成一个经验分布,我们可以用它来改进这个初始估计值。