Suppr超能文献

转化医学数据的整合与可视化,以更好地理解人类疾病。

Integration and Visualization of Translational Medicine Data for Better Understanding of Human Diseases.

机构信息

1 Luxembourg Centre for Systems Biomedicine, University of Luxembourg , Esch-Belval, Luxembourg .

2 Information Technology for Translational Medicine (ITTM) S.A. , Esch-Belval, Luxembourg .

出版信息

Big Data. 2016 Jun;4(2):97-108. doi: 10.1089/big.2015.0057.

Abstract

Translational medicine is a domain turning results of basic life science research into new tools and methods in a clinical environment, for example, as new diagnostics or therapies. Nowadays, the process of translation is supported by large amounts of heterogeneous data ranging from medical data to a whole range of -omics data. It is not only a great opportunity but also a great challenge, as translational medicine big data is difficult to integrate and analyze, and requires the involvement of biomedical experts for the data processing. We show here that visualization and interoperable workflows, combining multiple complex steps, can address at least parts of the challenge. In this article, we present an integrated workflow for exploring, analysis, and interpretation of translational medicine data in the context of human health. Three Web services-tranSMART, a Galaxy Server, and a MINERVA platform-are combined into one big data pipeline. Native visualization capabilities enable the biomedical experts to get a comprehensive overview and control over separate steps of the workflow. The capabilities of tranSMART enable a flexible filtering of multidimensional integrated data sets to create subsets suitable for downstream processing. A Galaxy Server offers visually aided construction of analytical pipelines, with the use of existing or custom components. A MINERVA platform supports the exploration of health and disease-related mechanisms in a contextualized analytical visualization system. We demonstrate the utility of our workflow by illustrating its subsequent steps using an existing data set, for which we propose a filtering scheme, an analytical pipeline, and a corresponding visualization of analytical results. The workflow is available as a sandbox environment, where readers can work with the described setup themselves. Overall, our work shows how visualization and interfacing of big data processing services facilitate exploration, analysis, and interpretation of translational medicine data.

摘要

转化医学是一个将基础生命科学研究成果转化为临床环境中新的工具和方法的领域,例如新的诊断或治疗方法。如今,翻译过程得到了大量异质数据的支持,这些数据包括从医学数据到各种组学数据的范围。这不仅是一个巨大的机遇,也是一个巨大的挑战,因为转化医学大数据难以整合和分析,并且需要生物医学专家参与数据处理。我们在这里展示,可视化和可互操作的工作流程可以结合多个复杂步骤,至少可以解决部分挑战。在本文中,我们提出了一种用于探索、分析和解释人类健康背景下转化医学数据的集成工作流程。三个 Web 服务——tranSMART、Galaxy Server 和 MINERVA 平台——被组合成一个大数据管道。本机可视化功能使生物医学专家能够全面了解和控制工作流程的各个步骤。tranSMART 的功能可灵活筛选多维集成数据集,以创建适合下游处理的子集。Galaxy Server 提供了使用现有或自定义组件进行可视化辅助分析管道构建的功能。MINERVA 平台支持在上下文分析可视化系统中探索健康和疾病相关机制。我们通过使用现有数据集说明后续步骤来展示我们工作流程的实用性,我们为其提出了一种筛选方案、一个分析管道和相应的分析结果可视化。该工作流程可作为沙盒环境使用,读者可以自行使用描述的设置进行操作。总的来说,我们的工作展示了大数据处理服务的可视化和接口如何促进转化医学数据的探索、分析和解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0beb/4932659/bea1d9d4eee2/fig-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验