Suppr超能文献

神经元活动对结构可塑性的相反作用。

Opposing Effects of Neuronal Activity on Structural Plasticity.

作者信息

Fauth Michael, Tetzlaff Christian

机构信息

Department of Computational Neuroscience, Third Institute of Physics - Biophysics, Georg-August UniversityGöttingen, Germany; Bernstein Center for Computational NeuroscienceGöttingen, Germany.

Bernstein Center for Computational NeuroscienceGöttingen, Germany; Max Planck Institute for Dynamics and Self-OrganizationGöttingen, Germany.

出版信息

Front Neuroanat. 2016 Jun 28;10:75. doi: 10.3389/fnana.2016.00075. eCollection 2016.

Abstract

The connectivity of the brain is continuously adjusted to new environmental influences by several activity-dependent adaptive processes. The most investigated adaptive mechanism is activity-dependent functional or synaptic plasticity regulating the transmission efficacy of existing synapses. Another important but less prominently discussed adaptive process is structural plasticity, which changes the connectivity by the formation and deletion of synapses. In this review, we show, based on experimental evidence, that structural plasticity can be classified similar to synaptic plasticity into two categories: (i) Hebbian structural plasticity, which leads to an increase (decrease) of the number of synapses during phases of high (low) neuronal activity and (ii) homeostatic structural plasticity, which balances these changes by removing and adding synapses. Furthermore, based on experimental and theoretical insights, we argue that each type of structural plasticity fulfills a different function. While Hebbian structural changes enhance memory lifetime, storage capacity, and memory robustness, homeostatic structural plasticity self-organizes the connectivity of the neural network to assure stability. However, the link between functional synaptic and structural plasticity as well as the detailed interactions between Hebbian and homeostatic structural plasticity are more complex. This implies even richer dynamics requiring further experimental and theoretical investigations.

摘要

大脑的连通性通过几种依赖活动的适应性过程不断地调整以适应新的环境影响。研究最多的适应性机制是依赖活动的功能或突触可塑性,它调节现有突触的传递效率。另一个重要但较少被显著讨论的适应性过程是结构可塑性,它通过突触的形成和消除来改变连通性。在这篇综述中,基于实验证据,我们表明结构可塑性可以类似于突触可塑性分为两类:(i)赫布结构可塑性,它在高(低)神经元活动阶段导致突触数量增加(减少);(ii)稳态结构可塑性,它通过去除和添加突触来平衡这些变化。此外,基于实验和理论见解,我们认为每种类型的结构可塑性都履行不同的功能。虽然赫布结构变化增强了记忆寿命、存储容量和记忆稳健性,但稳态结构可塑性对神经网络的连通性进行自组织以确保稳定性。然而,功能性突触可塑性和结构可塑性之间的联系以及赫布结构可塑性和稳态结构可塑性之间的详细相互作用更为复杂。这意味着需要进一步的实验和理论研究来探索更丰富的动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1b0/4923203/7471dfb21bea/fnana-10-00075-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验