Suppr超能文献

基于光纤的纳秒激发的双光子显微镜。

Two-photon microscopy using fiber-based nanosecond excitation.

作者信息

Karpf Sebastian, Eibl Matthias, Sauer Benjamin, Reinholz Fred, Hüttmann Gereon, Huber Robert

机构信息

Lehrstuhl für BioMolekulare Optik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 Munich, Germany; Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA.

Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany.

出版信息

Biomed Opt Express. 2016 Jun 1;7(7):2432-40. doi: 10.1364/BOE.7.002432. eCollection 2016 Jul 1.

Abstract

Two-photon excitation fluorescence (TPEF) microscopy is a powerful technique for sensitive tissue imaging at depths of up to 1000 micrometers. However, due to the shallow penetration, for in vivo imaging of internal organs in patients beam delivery by an endoscope is crucial. Until today, this is hindered by linear and non-linear pulse broadening of the femtosecond pulses in the optical fibers of the endoscopes. Here we present an endoscope-ready, fiber-based TPEF microscope, using nanosecond pulses at low repetition rates instead of femtosecond pulses. These nanosecond pulses lack most of the problems connected with femtosecond pulses but are equally suited for TPEF imaging. We derive and demonstrate that at given cw-power the TPEF signal only depends on the duty cycle of the laser source. Due to the higher pulse energy at the same peak power we can also demonstrate single shot two-photon fluorescence lifetime measurements.

摘要

双光子激发荧光(TPEF)显微镜是一种强大的技术,可用于对深度达1000微米的组织进行灵敏成像。然而,由于穿透深度较浅,对于患者体内器官的成像而言,通过内窥镜进行光束传输至关重要。直到如今,这一过程受到内窥镜光纤中飞秒脉冲的线性和非线性脉冲展宽的阻碍。在此,我们展示了一种基于光纤的、可用于内窥镜的TPEF显微镜,它使用低重复率的纳秒脉冲而非飞秒脉冲。这些纳秒脉冲不存在与飞秒脉冲相关的大多数问题,但同样适用于TPEF成像。我们推导并证明,在给定的连续波功率下,TPEF信号仅取决于激光源的占空比。由于在相同峰值功率下具有更高的脉冲能量,我们还能够展示单次双光子荧光寿命测量。

相似文献

1
Two-photon microscopy using fiber-based nanosecond excitation.
Biomed Opt Express. 2016 Jun 1;7(7):2432-40. doi: 10.1364/BOE.7.002432. eCollection 2016 Jul 1.
2
Cr:Forsterite-laser-based fiber-optic nonlinear endoscope with higher efficiencies.
Microsc Res Tech. 2008 Aug;71(8):559-63. doi: 10.1002/jemt.20586.
3
Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate.
Biomed Opt Express. 2017 Jun 1;8(7):3132-3142. doi: 10.1364/BOE.8.003132. eCollection 2017 Jul 1.
4
Optimizing pulse compressibility in completely all-fibered Ytterbium chirped pulse amplifiers for in vivo two photon laser scanning microscopy.
Biomed Opt Express. 2017 Jul 3;8(8):3526-3537. doi: 10.1364/BOE.8.003526. eCollection 2017 Aug 1.
5
Pulse duration and energy dependence of photodamage and lethality induced by femtosecond near infrared laser pulses in Drosophila melanogaster.
J Photochem Photobiol B. 2012 Oct 3;115:42-50. doi: 10.1016/j.jphotobiol.2012.06.009. Epub 2012 Jul 4.
6
Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses.
Biochem Biophys Res Commun. 2003 Nov 21;311(3):592-6. doi: 10.1016/j.bbrc.2003.09.236.
10

引用本文的文献

1
Two-photon microscopy using picosecond pulses from four-wave mixing in a Yb-doped photonic crystal fiber.
Biomed Opt Express. 2025 May 14;16(6):2327-2336. doi: 10.1364/BOE.563581. eCollection 2025 Jun 1.
2
Multiphoton excitation imaging via an actively mode-locked tunable fiber-cavity SOA laser around 800 nm.
Biomed Opt Express. 2022 Jan 3;13(2):525-538. doi: 10.1364/BOE.447010. eCollection 2022 Feb 1.
3
Imaging Inflammation - From Whole Body Imaging to Cellular Resolution.
Front Immunol. 2021 Jun 24;12:692222. doi: 10.3389/fimmu.2021.692222. eCollection 2021.
5
High-speed simultaneous multiscale photoacoustic microscopy.
J Biomed Opt. 2019 Aug;24(8):1-7. doi: 10.1117/1.JBO.24.8.086001.
6
Wavelength agile multi-photon microscopy with a fiber amplified diode laser.
Biomed Opt Express. 2018 Nov 15;9(12):6273-6282. doi: 10.1364/BOE.9.006273. eCollection 2018 Dec 1.
7
Two-photon imaging of the mammalian retina with ultrafast pulsing laser.
JCI Insight. 2018 Sep 6;3(17). doi: 10.1172/jci.insight.121555.
8
Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate.
Biomed Opt Express. 2017 Jun 1;8(7):3132-3142. doi: 10.1364/BOE.8.003132. eCollection 2017 Jul 1.

本文引用的文献

1
Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source.
J Biophotonics. 2016 Jul;9(7):709-14. doi: 10.1002/jbio.201500283. Epub 2016 Feb 12.
6
Developing compact multiphoton systems using femtosecond fiber lasers.
J Biomed Opt. 2009 May-Jun;14(3):030508. doi: 10.1117/1.3153842.
7
Two-photon fluorescence imaging with a pulse source based on a 980-nm gain-switched laser diode.
Opt Express. 2007 Mar 5;15(5):2454-8. doi: 10.1364/oe.15.002454.
8
Two-photon absorption standards in the 550-1600 nm excitation wavelength range.
Opt Express. 2008 Mar 17;16(6):4029-47. doi: 10.1364/oe.16.004029.
9
Major signal increase in fluorescence microscopy through dark-state relaxation.
Nat Methods. 2007 Jan;4(1):81-6. doi: 10.1038/nmeth986. Epub 2006 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验