Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States.
J Am Chem Soc. 2016 Aug 10;138(31):9996-10001. doi: 10.1021/jacs.6b05540. Epub 2016 Aug 1.
Lipid rafts are widely believed to be an essential organizational motif in cell membranes. However, direct evidence for interactions among lipid and/or protein components believed to be associated with rafts is quite limited owing, in part, to the small size and intrinsically dynamic interactions that lead to raft formation. Here, we exploit the single negative charge on the monosialoganglioside GM1, commonly associated with rafts, to create a gradient of GM1 in response to an electric field applied parallel to a patterned supported lipid bilayer. The composition of this gradient is visualized by imaging mass spectrometry using a NanoSIMS. Using this analytical method, added cholesterol and sphingomyelin, both neutral and not themselves displaced by the electric field, are observed to reorganize with GM1. This dynamic reorganization provides direct evidence for an attractive interaction among these raft components into some sort of cluster. At steady state we obtain an estimate for the composition of this cluster.
脂质筏被广泛认为是细胞膜中一种重要的组织模式。然而,由于脂质和/或与筏相关的蛋白质成分之间的相互作用很小,而且具有内在的动态相互作用,导致筏的形成,因此,直接证明这些成分之间存在相互作用的证据相当有限。在这里,我们利用通常与筏相关的单唾液酸神经节苷脂 GM1 上的单一负电荷,在平行于图案化支撑脂质双层施加电场的情况下,产生 GM1 梯度。使用 NanoSIMS 通过成像质谱分析来可视化该梯度的组成。使用这种分析方法,观察到添加的胆固醇和鞘磷脂,无论是中性的还是本身不受电场影响的,都与 GM1 一起重新排列。这种动态重组为这些筏成分之间存在某种吸引力相互作用提供了直接证据。在稳定状态下,我们获得了该簇组成的估计值。