Suppr超能文献

植物枯草杆菌蛋白酶中前肽作为分子内伴侣和成熟蛋白酶抑制剂的功能表征

Functional Characterization of Propeptides in Plant Subtilases as Intramolecular Chaperones and Inhibitors of the Mature Protease.

作者信息

Meyer Michael, Leptihn Sebastian, Welz Max, Schaller Andreas

机构信息

From the Institute of Plant Physiology and Biotechnology and.

the Department of Microbiology, University of Hohenheim, D-70593 Stuttgart, Germany.

出版信息

J Biol Chem. 2016 Sep 9;291(37):19449-61. doi: 10.1074/jbc.M116.744151. Epub 2016 Jul 22.

Abstract

Subtilisin-like serine proteases (SBTs) are extracellular proteases that depend on their propeptides for zymogen maturation and activation. The function of propeptides in plant SBTs is poorly understood and was analyzed here for the propeptide of tomato subtilase 3 (SBT3PP). SBT3PP was found to be required as an intramolecular chaperone for zymogen maturation and secretion of SBT3 in vivo Secretion was impaired in a propeptide-deletion mutant but could be restored by co-expression of the propeptide in trans SBT3 was inhibited by SBT3PP with a Kd of 74 nm for the enzyme-inhibitor complex. With a melting point of 87 °C, thermal stability of the complex was substantially increased as compared with the free protease suggesting that propeptide binding stabilizes the structure of SBT3. Even closely related propeptides from other plant SBTs could not substitute for SBT3PP as a folding assistant or autoinhibitor, revealing high specificity for the SBT3-SBT3PP interaction. Separation of the chaperone and inhibitor functions of SBT3PP in a domain-swap experiment indicated that they are mediated by different regions of the propeptide and, hence, different modes of interaction with SBT3. Release of active SBT3 from the autoinhibited complex relied on a pH-dependent cleavage of the propeptide at Asn-38 and Asp-54. The remarkable stability of the autoinhibited complex and pH dependence of the secondary cleavage provide means for stringent control of SBT3 activity, to ensure that the active enzyme is not released before it reaches the acidic environment of the trans-Golgi network or its final destination in the cell wall.

摘要

枯草杆菌蛋白酶样丝氨酸蛋白酶(SBTs)是细胞外蛋白酶,其酶原的成熟和激活依赖于其前肽。植物SBTs中前肽的功能尚不清楚,本文对番茄枯草杆菌蛋白酶3的前肽(SBT3PP)进行了分析。发现SBT3PP在体内作为分子内伴侣对于SBT3的酶原成熟和分泌是必需的。在一个前肽缺失突变体中分泌受损,但通过反式共表达前肽可以恢复。SBT3PP抑制SBT3,酶-抑制剂复合物的解离常数Kd为74 nM。该复合物的熔点为87℃,与游离蛋白酶相比,其热稳定性显著提高,表明前肽结合稳定了SBT3的结构。即使是来自其他植物SBTs的密切相关前肽也不能替代SBT3PP作为折叠辅助因子或自抑制剂,这揭示了SBT3-SBT3PP相互作用具有高度特异性。在结构域交换实验中,SBT3PP的伴侣和抑制剂功能的分离表明它们由前肽的不同区域介导,因此与SBT3的相互作用模式不同。从自抑制复合物中释放活性SBT3依赖于前肽在Asn-38和Asp-54处的pH依赖性切割。自抑制复合物的显著稳定性和二次切割的pH依赖性为严格控制SBT3活性提供了手段,以确保活性酶在到达反式高尔基体网络的酸性环境或细胞壁中的最终目的地之前不会释放。

相似文献

1
Functional Characterization of Propeptides in Plant Subtilases as Intramolecular Chaperones and Inhibitors of the Mature Protease.
J Biol Chem. 2016 Sep 9;291(37):19449-61. doi: 10.1074/jbc.M116.744151. Epub 2016 Jul 22.
2
A novel subtilase inhibitor in plants shows structural and functional similarities to protease propeptides.
J Biol Chem. 2017 Apr 14;292(15):6389-6401. doi: 10.1074/jbc.M117.775445. Epub 2017 Feb 21.
3
Structural basis for Ca2+-independence and activation by homodimerization of tomato subtilase 3.
Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17223-8. doi: 10.1073/pnas.0907587106. Epub 2009 Sep 23.
6
Functional analysis of the cucumisin propeptide as a potent inhibitor of its mature enzyme.
J Biol Chem. 2010 Sep 24;285(39):29797-807. doi: 10.1074/jbc.M109.083162. Epub 2010 Jul 18.
7
Functional analysis of the propeptides of subtilisin E and aqualysin I as intramolecular chaperones.
FEBS Lett. 2001 Nov 16;508(2):210-4. doi: 10.1016/s0014-5793(01)03053-8.

引用本文的文献

1
The lowdown on breakdown: Open questions in plant proteolysis.
Plant Cell. 2024 Sep 3;36(9):2931-2975. doi: 10.1093/plcell/koae193.
2
Phytaspase Does Not Require Proteolytic Activity for Its Stress-Induced Internalization.
Int J Mol Sci. 2024 Jun 19;25(12):6729. doi: 10.3390/ijms25126729.
5
Microbial proteases and their applications.
Front Microbiol. 2023 Sep 14;14:1236368. doi: 10.3389/fmicb.2023.1236368. eCollection 2023.
6
High selectivity of the hyperthermophilic subtilase propeptide domain toward inhibition of its cognate protease.
Microbiol Spectr. 2023 Sep 1;11(5):e0148723. doi: 10.1128/spectrum.01487-23.
7
Assay for Phytaspase-mediated Peptide Precursor Cleavage Using Synthetic Oligopeptide Substrates.
Bio Protoc. 2023 Feb 5;13(3):e4608. doi: 10.21769/BioProtoc.4608.
8
A secreted fungal subtilase interferes with rice immunity via degradation of SUPPRESSOR OF G2 ALLELE OF skp1.
Plant Physiol. 2022 Sep 28;190(2):1474-1489. doi: 10.1093/plphys/kiac334.
9
Identification of Cognate Protease/Substrate Pairs by Use of Class-Specific Inhibitors.
Methods Mol Biol. 2022;2447:67-81. doi: 10.1007/978-1-0716-2079-3_6.
10
The front line of defence: a meta-analysis of apoplastic proteases in plant immunity.
J Exp Bot. 2021 Apr 13;72(9):3381-3394. doi: 10.1093/jxb/eraa602.

本文引用的文献

1
V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis.
Nat Plants. 2015 Jul 6;1:15094. doi: 10.1038/nplants.2015.94.
2
Dirigent Proteins from Cotton (Gossypium sp.) for the Atropselective Synthesis of Gossypol.
Angew Chem Int Ed Engl. 2015 Dec 1;54(49):14660-3. doi: 10.1002/anie.201507543. Epub 2015 Oct 13.
4
Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions.
Methods. 2013 Mar;59(3):301-15. doi: 10.1016/j.ymeth.2012.12.005. Epub 2012 Dec 24.
5
Crystal structure of cucumisin, a subtilisin-like endoprotease from Cucumis melo L.
J Mol Biol. 2012 Oct 26;423(3):386-96. doi: 10.1016/j.jmb.2012.07.013. Epub 2012 Jul 24.
6
Propeptides are sufficient to regulate organelle-specific pH-dependent activation of furin and proprotein convertase 1/3.
J Mol Biol. 2012 Oct 12;423(1):47-62. doi: 10.1016/j.jmb.2012.06.023. Epub 2012 Jun 25.
7
Subtilases - versatile tools for protein turnover, plant development, and interactions with the environment.
Physiol Plant. 2012 May;145(1):52-66. doi: 10.1111/j.1399-3054.2011.01529.x. Epub 2011 Nov 21.
8
SignalP 4.0: discriminating signal peptides from transmembrane regions.
Nat Methods. 2011 Sep 29;8(10):785-6. doi: 10.1038/nmeth.1701.
9
Understanding the synergistic effect of arginine and glutamic acid mixtures on protein solubility.
J Phys Chem B. 2011 Oct 20;115(41):11831-9. doi: 10.1021/jp204462t. Epub 2011 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验