Suppr超能文献

关于非正态下最大点二列相关的简短说明。

A short note on the maximal point-biserial correlation under non-normality.

作者信息

Cheng Ying, Liu Haiyan

机构信息

Department of Psychology, University of Notre Dame, Indiana, USA.

出版信息

Br J Math Stat Psychol. 2016 Nov;69(3):344-351. doi: 10.1111/bmsp.12075.

Abstract

The aim of this paper is to derive the maximal point-biserial correlation under non-normality. Several widely used non-normal distributions are considered, namely the uniform distribution, t-distribution, exponential distribution, and a mixture of two normal distributions. Results show that the maximal point-biserial correlation, depending on the non-normal continuous variable underlying the binary manifest variable, may not be a function of p (the probability that the dichotomous variable takes the value 1), can be symmetric or non-symmetric around p = .5, and may still lie in the range from -1.0 to 1.0. Therefore researchers should exercise caution when they interpret their sample point-biserial correlation coefficients based on popular beliefs that the maximal point-biserial correlation is always smaller than 1, and that the size of the correlation is always further restricted as p deviates from .5.

摘要

本文旨在推导非正态情况下的最大点二列相关。考虑了几种广泛使用的非正态分布,即均匀分布、t分布、指数分布以及两个正态分布的混合。结果表明,最大点二列相关取决于二元显变量背后的非正态连续变量,可能不是p(二分变量取值为1的概率)的函数,在p = 0.5周围可能是对称的或非对称的,并且仍可能在-1.0到1.0的范围内。因此,研究人员在基于流行观点解释其样本点二列相关系数时应谨慎,这些流行观点认为最大点二列相关总是小于1,并且随着p偏离0.5,相关大小总是会进一步受限。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验