Suppr超能文献

细菌在宿主-病原体界面维持锌金属稳态的策略。

Bacterial Strategies to Maintain Zinc Metallostasis at the Host-Pathogen Interface.

作者信息

Capdevila Daiana A, Wang Jiefei, Giedroc David P

机构信息

From the Departments of Chemistry and the Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina.

From the Departments of Chemistry and Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405-7102 and.

出版信息

J Biol Chem. 2016 Sep 30;291(40):20858-20868. doi: 10.1074/jbc.R116.742023. Epub 2016 Jul 26.

Abstract

Among the biologically required first row, late d-block metals from Mn to Zn, the catalytic and structural reach of Zn ensures that this essential micronutrient touches nearly every major metabolic process or pathway in the cell. Zn is also toxic in excess, primarily because it is a highly competitive divalent metal and will displace more weakly bound transition metals in the active sites of metalloenzymes if left unregulated. The vertebrate innate immune system uses several strategies to exploit this "Achilles heel" of microbial physiology, but bacterial evolution has responded in kind. This review highlights recent insights into transcriptional, transport, and trafficking mechanisms that pathogens use to "win the fight" over zinc and thrive in an otherwise hostile environment.

摘要

在从锰到锌的生物必需第一周期晚期d区金属中,锌的催化和结构作用范围确保了这种必需的微量营养素几乎涉及细胞内的每一个主要代谢过程或途径。锌过量时也具有毒性,主要是因为它是一种竞争性很强的二价金属,如果不受调控,会在金属酶的活性位点取代结合较弱的过渡金属。脊椎动物的先天免疫系统利用多种策略来利用微生物生理学的这一“阿喀琉斯之踵”,但细菌进化也做出了相应反应。本综述重点介绍了病原体用于在争夺锌的过程中“赢得战斗”并在原本恶劣的环境中茁壮成长的转录、运输和转运机制的最新见解。

相似文献

1
Bacterial Strategies to Maintain Zinc Metallostasis at the Host-Pathogen Interface.
J Biol Chem. 2016 Sep 30;291(40):20858-20868. doi: 10.1074/jbc.R116.742023. Epub 2016 Jul 26.
2
Metallochaperones and metalloregulation in bacteria.
Essays Biochem. 2017 May 9;61(2):177-200. doi: 10.1042/EBC20160076.
3
Copper transport and trafficking at the host-bacterial pathogen interface.
Acc Chem Res. 2014 Dec 16;47(12):3605-13. doi: 10.1021/ar500300n. Epub 2014 Oct 13.
4
Multi-metal nutrient restriction and crosstalk in metallostasis systems in microbial pathogens.
Curr Opin Microbiol. 2020 Jun;55:17-25. doi: 10.1016/j.mib.2020.01.010. Epub 2020 Feb 12.
5
Molecular Evolution of Transition Metal Bioavailability at the Host-Pathogen Interface.
Trends Microbiol. 2021 May;29(5):441-457. doi: 10.1016/j.tim.2020.08.001. Epub 2020 Sep 18.
6
Metal homeostasis in infectious disease: recent advances in bacterial metallophores and the human metal-withholding response.
Curr Opin Chem Biol. 2017 Apr;37:10-18. doi: 10.1016/j.cbpa.2016.09.012. Epub 2016 Dec 18.
7
Recent developments in copper and zinc homeostasis in bacterial pathogens.
Curr Opin Chem Biol. 2014 Apr;19:59-66. doi: 10.1016/j.cbpa.2013.12.021. Epub 2014 Jan 22.
8
Metallothionein: a Potential Link in the Regulation of Zinc in Nutritional Immunity.
Biol Trace Elem Res. 2018 Mar;182(1):1-13. doi: 10.1007/s12011-017-1061-8. Epub 2017 Jun 5.
10
Competition for zinc binding in the host-pathogen interaction.
Front Cell Infect Microbiol. 2013 Dec 24;3:108. doi: 10.3389/fcimb.2013.00108. eCollection 2013.

引用本文的文献

5
The Dentin Microbiome: A Metatranscriptomic Evaluation of Caries-Associated Bacteria.
Biomedicines. 2025 Feb 26;13(3):583. doi: 10.3390/biomedicines13030583.
8
Effects of orally administered clioquinol on the fecal microbiome of horses.
J Vet Intern Med. 2025 Jan-Feb;39(1):e17276. doi: 10.1111/jvim.17276.
9
Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking.
Chem Rev. 2024 Dec 25;124(24):13574-13659. doi: 10.1021/acs.chemrev.4c00264. Epub 2024 Dec 10.
10
A 'through-DNA' mechanism for co-regulation of metal uptake and efflux.
Nat Commun. 2024 Dec 4;15(1):10555. doi: 10.1038/s41467-024-55017-z.

本文引用的文献

2
The Response of Acinetobacter baumannii to Zinc Starvation.
Cell Host Microbe. 2016 Jun 8;19(6):826-36. doi: 10.1016/j.chom.2016.05.007.
3
Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus.
Science. 2016 May 27;352(6289):1105-9. doi: 10.1126/science.aaf1018.
6
[NiFe]-Hydrogenase Maturation.
Biochemistry. 2016 Mar 29;55(12):1689-701. doi: 10.1021/acs.biochem.5b01328. Epub 2016 Mar 14.
7
Calcium Ions Tune the Zinc-Sequestering Properties and Antimicrobial Activity of Human S100A12.
Chem Sci. 2016 Feb 1;7(2):1338-1348. doi: 10.1039/C5SC03655K. Epub 2015 Oct 26.
10
AztD, a Periplasmic Zinc Metallochaperone to an ATP-binding Cassette (ABC) Transporter System in Paracoccus denitrificans.
J Biol Chem. 2015 Dec 11;290(50):29984-92. doi: 10.1074/jbc.M115.684506. Epub 2015 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验