Suppr超能文献

基于结构的靶点搜寻与配体分析方法。

Structure-Based Approaches to Target Fishing and Ligand Profiling.

作者信息

Rognan Didier

机构信息

Structural Chemogenomics, UMR 7200 CNRS-UdS, 74 route du Rhin, F-67400 Illlkirch phone: +33.3.68854235 fax: +33.3.68854310.

出版信息

Mol Inform. 2010 Mar 15;29(3):176-87. doi: 10.1002/minf.200900081. Epub 2010 Mar 5.

Abstract

Chemogenomics is an emerging interdisciplinary field aiming at identifying all possible ligands of all possible targets. If one groups targets in columns and ligands in rows, chemogenomic approaches to drug discovery just fill the interaction matrix. Since experimental data do not suffice, several computational methods are currently actively developed to supplement time-consuming and costly experiments. They are either designed to fill rows and thus profile a ligand towards a heterogeneous set of targets (target profiling) or to fill columns and thus identify novel ligands for an existing target (standard virtual screening). At the interface of both strategies are now true chemogenomic computational methods filling well defined areas in the matrix. The present review will focus on (protein) structure-based approaches and illustrates major advances in this novel exciting field which is supposed to massively impact rational drug design in the next decade.

摘要

化学基因组学是一个新兴的跨学科领域,旨在识别所有可能靶点的所有可能配体。如果将靶点列成列,配体排成行,那么药物发现的化学基因组学方法就只是填充相互作用矩阵。由于实验数据不足,目前正在积极开发几种计算方法,以补充耗时且成本高昂的实验。它们要么旨在填充行,从而针对一组异质靶点描绘配体(靶点描绘),要么旨在填充列,从而为现有靶点识别新型配体(标准虚拟筛选)。这两种策略的交叉点现在是真正的化学基因组学计算方法,它们填充矩阵中定义明确的区域。本综述将聚焦于基于(蛋白质)结构的方法,并阐述这一令人兴奋的新领域的主要进展,该领域有望在未来十年对合理药物设计产生重大影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验