Suppr超能文献

质子化肽离子与有机表面的碰撞动力学:模拟与实验的一致性

Dynamics of Protonated Peptide Ion Collisions with Organic Surfaces: Consonance of Simulation and Experiment.

作者信息

Pratihar Subha, Barnes George L, Laskin Julia, Hase William L

机构信息

Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States.

Department of Chemistry and Biochemistry, Siena College , Loudonville, New York 12211, United States.

出版信息

J Phys Chem Lett. 2016 Aug 18;7(16):3142-50. doi: 10.1021/acs.jpclett.6b00978. Epub 2016 Aug 2.

Abstract

In this Perspective, mass spectrometry experiments and chemical dynamics simulations are described that have explored the atomistic dynamics of protonated peptide ions, peptide-H(+), colliding with organic surfaces. These studies have investigated the energy transfer and fragmentation dynamics for peptide-H(+) surface-induced dissociation (SID), peptide-H(+) physisorption on the surface, soft landing (SL), and peptide-H(+) reaction with the surface, reactive landing (RL). SID provides primary structures of biological ions and information regarding their fragmentation pathways and energetics. Two SID mechanisms are found for peptide-H(+) fragmentation. A traditional mechanism in which peptide-H(+) is vibrationally excited by its collision with the surface, rebounds off the surface and then dissociates in accord with the statistical, RRKM unimolecular rate theory. The other, shattering, is a nonstatistical mechanism in which peptide-H(+) fragments as it collides with the surface, dissociating via many pathways and forming many product ions. Shattering is important for collisions with diamond and perfluorinated self-assembled monolayer (F-SAM) surfaces, increasing in importance with the peptide-H(+) collision energy. Chemical dynamics simulations also provide important mechanistic insights on SL and RL of biological ions on surfaces. The simulations indicate that SL occurs via multiple mechanisms consisting of sequences of peptide-H(+) physisorption on and penetration in the surface. SL and RL have a broad range of important applications including preparation of protein or peptide microarrays, development of biocompatible substrates and biosensors, and preparation of novel synthetic materials, including nanomaterials. An important RL mechanism is intact deposition of peptide-H(+) on the surface.

摘要

在这篇展望文章中,描述了质谱实验和化学动力学模拟,这些实验和模拟探索了质子化肽离子(肽-H⁺)与有机表面碰撞时的原子动力学。这些研究调查了肽-H⁺表面诱导解离(SID)、肽-H⁺在表面的物理吸附、软着陆(SL)以及肽-H⁺与表面的反应(反应性着陆,RL)的能量转移和碎片化动力学。SID提供了生物离子的一级结构以及有关其碎片化途径和能量学的信息。发现了两种肽-H⁺碎片化的SID机制。一种传统机制是肽-H⁺通过与表面碰撞而发生振动激发,从表面反弹,然后根据统计的RRKM单分子速率理论解离。另一种是破碎机制,这是一种非统计机制,其中肽-H⁺在与表面碰撞时发生碎片化,通过多种途径解离并形成多种产物离子。破碎机制对于与金刚石和全氟自组装单分子层(F-SAM)表面的碰撞很重要,并且随着肽-H⁺碰撞能量的增加而变得更加重要。化学动力学模拟也为生物离子在表面的软着陆和反应性着陆提供了重要的机理见解。模拟表明,软着陆通过多种机制发生,这些机制包括肽-H⁺在表面的物理吸附和渗透序列。软着陆和反应性着陆具有广泛的重要应用,包括蛋白质或肽微阵列的制备、生物相容性底物和生物传感器的开发以及新型合成材料(包括纳米材料)的制备。一种重要的反应性着陆机制是肽-H⁺完整地沉积在表面上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验