Suppr超能文献

半导体材料中的等离子体共振用于在单粒子水平检测光催化。

Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level.

机构信息

State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.

出版信息

Nanoscale. 2016 Aug 11;8(32):15001-7. doi: 10.1039/c6nr04857a.

Abstract

Hot carriers, generated via the non-radiative decay of localized surface plasmon, can be utilized in photovoltaic and photocatalytic devices. In recent years, most studies have focused on conventional plasmon materials like Au and Ag. However, they suffer from several drawbacks like low energy of the generated hot carriers and a high charge-carrier recombination rate. To resolve these problems, here, we propose the plasmon resonances in heavily self-doped titanium oxide (TiO1.67) to realize effective hot carrier generation. Since the plasmon resonant energy of TiO1.67 nanoparticles (2.56 eV) is larger than the bandgap (2.15 eV), plasmon resonances through interband transition can realize both the generation and separation of hot carriers and bring a new strategy for visible-light photodegradation. The photodegradation rate for methyl orange was about 0.034 min(-1). More importantly, the combination of plasmonic and catalytic properties makes it feasible to investigate the degradation process of different materials and different structures at the single particle level in situ. By detecting the scattering shift, we demonstrated that the TiO1.67 dimer (Δλ/ΔλRIU = 0.16) possesses a higher photodegradation rate than an individual nanoparticle (Δλ/ΔλRIU = 0.09). We hope this finding may be a beginning, paving the way toward the development of semiconductor plasmonic materials for new applications beyond noble metals.

摘要

热载流子可以通过局域表面等离激元的非辐射衰减产生,并可用于光伏和光催化器件。近年来,大多数研究都集中在传统的等离子体材料上,如金和银。然而,它们存在一些缺点,如产生的热载流子能量低和电荷载流子复合速率高。为了解决这些问题,我们提出了在高度自掺杂的氧化钛(TiO1.67)中实现有效的热载流子产生的等离子体共振。由于 TiO1.67 纳米颗粒的等离子体共振能量(2.56eV)大于带隙(2.15eV),通过带间跃迁的等离子体共振可以实现热载流子的产生和分离,为可见光光降解带来了新的策略。甲基橙的光降解速率约为 0.034min(-1)。更重要的是,等离子体和催化性能的结合使得在单个粒子水平原位研究不同材料和不同结构的降解过程成为可能。通过检测散射位移,我们证明 TiO1.67 二聚体(Δλ/ΔλRIU = 0.16)比单个纳米颗粒(Δλ/ΔλRIU = 0.09)具有更高的光降解速率。我们希望这一发现可能是一个开始,为开发超越贵金属的半导体等离子体材料的新应用铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验