Phillips Lorraine J, DeRoche Chelsea B, Rantz Marilyn, Alexander Gregory L, Skubic Marjorie, Despins Laurel, Abbott Carmen, Harris Bradford H, Galambos Colleen, Koopman Richelle J
1 University of Missouri, Columbia, MO, USA.
West J Nurs Res. 2017 Jan;39(1):78-94. doi: 10.1177/0193945916662027. Epub 2016 Jul 28.
This study explored using Big Data, totaling 66 terabytes over 10 years, captured from sensor systems installed in independent living apartments to predict falls from pre-fall changes in residents' Kinect-recorded gait parameters. Over a period of 3 to 48 months, we analyzed gait parameters continuously collected for residents who actually fell ( n = 13) and those who did not fall ( n = 10). We analyzed associations between participants' fall events ( n = 69) and pre-fall changes in in-home gait speed and stride length ( n = 2,070). Preliminary results indicate that a cumulative change in speed over time is associated with the probability of a fall ( p < .0001). The odds of a resident falling within 3 weeks after a cumulative change of 2.54 cm/s is 4.22 times the odds of a resident falling within 3 weeks after no change in in-home gait speed. Results demonstrate using sensors to measure in-home gait parameters associated with the occurrence of future falls.
本研究探索利用从安装在独立生活公寓中的传感器系统采集的大数据(10年间总计66太字节),通过居民Kinect记录的步态参数的跌倒前变化来预测跌倒。在3至48个月的时间里,我们分析了为实际跌倒的居民(n = 13)和未跌倒的居民(n = 10)持续收集的步态参数。我们分析了参与者的跌倒事件(n = 69)与家中步态速度和步幅的跌倒前变化(n = 2,070)之间的关联。初步结果表明,速度随时间的累积变化与跌倒概率相关(p <.0001)。在家中步态速度累积变化2.54厘米/秒后3周内居民跌倒的几率是家中步态速度无变化后3周内居民跌倒几率的4.22倍。结果表明,使用传感器测量与未来跌倒发生相关的家中步态参数。