Suppr超能文献

在独立生活中使用嵌入式传感器预测步态变化和跌倒。

Using Embedded Sensors in Independent Living to Predict Gait Changes and Falls.

作者信息

Phillips Lorraine J, DeRoche Chelsea B, Rantz Marilyn, Alexander Gregory L, Skubic Marjorie, Despins Laurel, Abbott Carmen, Harris Bradford H, Galambos Colleen, Koopman Richelle J

机构信息

1 University of Missouri, Columbia, MO, USA.

出版信息

West J Nurs Res. 2017 Jan;39(1):78-94. doi: 10.1177/0193945916662027. Epub 2016 Jul 28.

Abstract

This study explored using Big Data, totaling 66 terabytes over 10 years, captured from sensor systems installed in independent living apartments to predict falls from pre-fall changes in residents' Kinect-recorded gait parameters. Over a period of 3 to 48 months, we analyzed gait parameters continuously collected for residents who actually fell ( n = 13) and those who did not fall ( n = 10). We analyzed associations between participants' fall events ( n = 69) and pre-fall changes in in-home gait speed and stride length ( n = 2,070). Preliminary results indicate that a cumulative change in speed over time is associated with the probability of a fall ( p < .0001). The odds of a resident falling within 3 weeks after a cumulative change of 2.54 cm/s is 4.22 times the odds of a resident falling within 3 weeks after no change in in-home gait speed. Results demonstrate using sensors to measure in-home gait parameters associated with the occurrence of future falls.

摘要

本研究探索利用从安装在独立生活公寓中的传感器系统采集的大数据(10年间总计66太字节),通过居民Kinect记录的步态参数的跌倒前变化来预测跌倒。在3至48个月的时间里,我们分析了为实际跌倒的居民(n = 13)和未跌倒的居民(n = 10)持续收集的步态参数。我们分析了参与者的跌倒事件(n = 69)与家中步态速度和步幅的跌倒前变化(n = 2,070)之间的关联。初步结果表明,速度随时间的累积变化与跌倒概率相关(p <.0001)。在家中步态速度累积变化2.54厘米/秒后3周内居民跌倒的几率是家中步态速度无变化后3周内居民跌倒几率的4.22倍。结果表明,使用传感器测量与未来跌倒发生相关的家中步态参数。

相似文献

1
Using Embedded Sensors in Independent Living to Predict Gait Changes and Falls.
West J Nurs Res. 2017 Jan;39(1):78-94. doi: 10.1177/0193945916662027. Epub 2016 Jul 28.
2
Gait changes in older adults: predictors of falls or indicators of fear.
J Am Geriatr Soc. 1997 Mar;45(3):313-20. doi: 10.1111/j.1532-5415.1997.tb00946.x.
3
Automated In-Home Fall Risk Assessment and Detection Sensor System for Elders.
Gerontologist. 2015 Jun;55 Suppl 1(Suppl 1):S78-87. doi: 10.1093/geront/gnv044.
4
Gait symmetry in the dual task condition as a predictor of future falls among independent older adults: a 2-year longitudinal study.
Aging Clin Exp Res. 2019 Aug;31(8):1057-1067. doi: 10.1007/s40520-019-01210-w. Epub 2019 May 8.
5
Exploring the feasibility and acceptability of sensor monitoring of gait and falls in the homes of persons with multiple sclerosis.
Gait Posture. 2016 Sep;49:277-282. doi: 10.1016/j.gaitpost.2016.07.005. Epub 2016 Jul 7.
6
Gait variability and fall risk in community-living older adults: a 1-year prospective study.
Arch Phys Med Rehabil. 2001 Aug;82(8):1050-6. doi: 10.1053/apmr.2001.24893.
7
Associations between gait speed and well-known fall risk factors among community-dwelling older adults.
Physiother Res Int. 2019 Jan;24(1):e1743. doi: 10.1002/pri.1743. Epub 2018 Sep 10.
8
What Factors Predict Falls in Older Adults Living in Nursing Homes: A Pilot Study.
J Funct Morphol Kinesiol. 2018 Dec 25;4(1):3. doi: 10.3390/jfmk4010003.
10
Automated health alerts from Kinect-based in-home gait measurements.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2961-4. doi: 10.1109/EMBC.2014.6944244.

引用本文的文献

1
Enhancing Eldercare: Assessing Clinician's Perception of Linguistic Summaries in Health Monitoring Alert Systems.
Appl Clin Inform. 2025 Mar;16(2):439-446. doi: 10.1055/a-2515-1630. Epub 2025 May 14.
5
Development and Testing of a Daily Activity Recognition System for Post-Stroke Rehabilitation.
Sensors (Basel). 2023 Sep 14;23(18):7872. doi: 10.3390/s23187872.
7
Assessing Handrail-Use Behavior during Stair Ascent or Descent Using Ambient Sensing Technology.
Sensors (Basel). 2023 Feb 16;23(4):2236. doi: 10.3390/s23042236.
8
Risk factors of falls in elderly patients with visual impairment.
Front Public Health. 2022 Aug 22;10:984199. doi: 10.3389/fpubh.2022.984199. eCollection 2022.
9
Personalized Digital Health Beyond the Pandemic.
J Nurse Pract. 2022 Jul-Aug;18(7):709-714. doi: 10.1016/j.nurpra.2022.04.022. Epub 2022 May 25.
10
Human-centered approaches that integrate sensor technology across the lifespan: Opportunities and challenges.
Nurs Outlook. 2020 Nov-Dec;68(6):734-744. doi: 10.1016/j.outlook.2020.05.004. Epub 2020 Jul 4.

本文引用的文献

4
Management of Dementia and Depression Utilizing In- Home Passive Sensor Data.
Gerontechnology. 2013 Jan 1;11(3):457-468. doi: 10.4017/gt.2013.11.3.004.00.
5
Unobtrusive, continuous, in-home gait measurement using the Microsoft Kinect.
IEEE Trans Biomed Eng. 2013 Oct;60(10):2925-32. doi: 10.1109/TBME.2013.2266341. Epub 2013 Jun 5.
7
Sensor technology to support Aging in Place.
J Am Med Dir Assoc. 2013 Jun;14(6):386-91. doi: 10.1016/j.jamda.2013.02.018. Epub 2013 Apr 3.
8
Older adults' participation in the development of smart environments: an integrated review of the literature.
Geriatr Nurs. 2013 Mar-Apr;34(2):116-21. doi: 10.1016/j.gerinurse.2012.11.001. Epub 2012 Dec 28.
9
Slipping and tripping: fall injuries in adults associated with rugs and carpets.
J Inj Violence Res. 2013 Jan;5(1):61-9. doi: 10.5249/jivr.v5i1.177. Epub 2012 Aug 6.
10
One walk a year to 1000 within a year: continuous in-home unobtrusive gait assessment of older adults.
Gait Posture. 2012 Feb;35(2):197-202. doi: 10.1016/j.gaitpost.2011.09.006. Epub 2011 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验