Suppr超能文献

Effects of Plasma Polymer Films and Their Deposition Powers on the Barrier Characteristics of the Multilayer Encapsulation for Organic Devices.

作者信息

Kim Hoonbae, Ban Wonjin, Kwon Sungruel, Yong Sanghyun, Chae Heeyeop, Jung Donggeun

出版信息

J Nanosci Nanotechnol. 2016 May;16(5):5389-93. doi: 10.1166/jnn.2016.12201.

Abstract

Organic electronic devices (OEDs) are quite suitable for use in flexible devices due to their ruggedness and flexibility. A number of researchers have studied the use of OEDs on flexible substrates in transparent, flexible devices in the near future. However, water and oxygen can permeate through the flexible substrates and can reduce the longevity of OEDs made from organic materials, which are weak to moisture and oxygen. In order to prevent the degradation of the OEDs, researchers have applied an encapsulation layer to the flexible substrates. In this study, Al2O3/plasma polymer film/Al2O3 multi-layers were deposited on polyethylene-naphthalate substrates through a combination of atomic layer deposition and plasma-enhanced chemical vapor deposition (PECVD). The plasma polymer film, which is located between the Al2O3 films, is deposited via PECVD with the use of a tetrakis(trimethylsilyloxy)silane precursor. The power of the plasma deposition varied from 10 to 50 W. The hydrophobicity of the plasma polymer film surfaces was investigated by measuring the water contact angle. The chemical structures of the plasma polymer films were measured via ex-situ Fourier transform infrared analysis. The permeation curves of the various films were analyzed by performing a calcium (Ca)-test.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验