Suppr超能文献

视网膜中神经元数量的基因组控制。

Genomic control of neuronal demographics in the retina.

作者信息

Reese Benjamin E, Keeley Patrick W

机构信息

Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, USA; Departments of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, USA.

Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, USA; Departments of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA.

出版信息

Prog Retin Eye Res. 2016 Nov;55:246-259. doi: 10.1016/j.preteyeres.2016.07.003. Epub 2016 Aug 1.

Abstract

The mature retinal architecture is composed of various types of neuron, each population differing in size and constrained to particular layers, wherein the cells achieve a characteristic patterning in their local organization. These demographic features of retinal nerve cell populations are each complex traits controlled by multiple genes affecting different processes during development, and their genetic determinants can be dissected by correlating variation in these traits with their genomic architecture across recombinant-inbred mouse strains. Using such a resource, we consider how the variation in the numbers of twelve different types of retinal neuron are independent of one another, including those sharing transcriptional regulation as well as those that are synaptically-connected, each mapping to distinct genomic loci. Using the populations of two retinal interneurons, the horizontal cells and the cholinergic amacrine cells, we present in further detail examples where the variation in neuronal number, as well as the variation in mosaic patterning or in laminar positioning, each maps to discrete genomic loci where allelic variants modulating these features must be present. At those loci, we identify candidate genes which, when rendered non-functional, alter those very demographic properties, and in turn, we identify candidate coding or regulatory variants that alter protein structure or gene expression, respectively, being prospective contributors to the variation in phenotype. This forward-genetic approach provides an alternative means for dissecting the molecular genetic control of neuronal population dynamics, with each genomic locus serving as a causal anchor from which we may ultimately understand the developmental principles responsible for the control of those traits.

摘要

成熟的视网膜结构由多种类型的神经元组成,每类神经元在大小上有所不同,并局限于特定的层中,在这些层中细胞在其局部组织中形成特征性模式。视网膜神经细胞群体的这些人口统计学特征均为复杂性状,由多个影响发育过程中不同进程的基因所控制,并且可以通过将这些性状的变异与其在重组近交小鼠品系中的基因组结构进行关联分析,来剖析其遗传决定因素。利用这样一种资源,我们研究了十二种不同类型视网膜神经元数量的变异是如何彼此独立的,包括那些共享转录调控的神经元以及那些存在突触连接的神经元,每种神经元都映射到不同的基因组位点。利用两种视网膜中间神经元群体,即水平细胞和胆碱能无长突细胞,我们进一步详细展示了实例,其中神经元数量的变异,以及镶嵌模式或层状定位的变异,均映射到离散的基因组位点,在这些位点必定存在调节这些特征的等位基因变体。在这些位点,我们鉴定出了一些候选基因,当这些基因丧失功能时,会改变那些确切的人口统计学特性,进而,我们分别鉴定出了改变蛋白质结构或基因表达的候选编码或调控变体,它们可能是表型变异的潜在贡献因素。这种正向遗传学方法为剖析神经元群体动态的分子遗传控制提供了一种替代手段,每个基因组位点都作为一个因果锚点,由此我们最终或许能够理解负责控制那些性状的发育原理。

相似文献

1
Genomic control of neuronal demographics in the retina.
Prog Retin Eye Res. 2016 Nov;55:246-259. doi: 10.1016/j.preteyeres.2016.07.003. Epub 2016 Aug 1.
2
Genomic Control of Retinal Cell Number: Challenges, Protocol, and Results.
Methods Mol Biol. 2017;1488:365-390. doi: 10.1007/978-1-4939-6427-7_17.
3
Independent genomic control of neuronal number across retinal cell types.
Dev Cell. 2014 Jul 14;30(1):103-9. doi: 10.1016/j.devcel.2014.05.003. Epub 2014 Jun 19.
4
Quantitative trait loci on chromosomes 9 and 19 modulate AII amacrine cell number in the mouse retina.
Front Neurosci. 2023 Feb 2;17:1078168. doi: 10.3389/fnins.2023.1078168. eCollection 2023.
5
Pituitary tumor-transforming gene 1 regulates the patterning of retinal mosaics.
Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9295-300. doi: 10.1073/pnas.1323543111. Epub 2014 Jun 10.
6
Genetic Control of Rod Bipolar Cell Number in the Mouse Retina.
Front Neurosci. 2018 May 9;12:285. doi: 10.3389/fnins.2018.00285. eCollection 2018.
7
Changes in retinal neuronal populations in the DBA/2J mouse.
Cell Tissue Res. 2005 Apr;320(1):51-9. doi: 10.1007/s00441-004-1062-8. Epub 2005 Feb 16.
9
Evidence for a columnar organization of cones, Müller cells, and neurons in the retina of a cichlid fish.
Neuroscience. 2007 Feb 9;144(3):1004-14. doi: 10.1016/j.neuroscience.2006.10.029. Epub 2006 Dec 6.

引用本文的文献

1
Maf1 controls retinal neuron number by both RNA Pol III- and Pol II-dependent mechanisms.
iScience. 2023 Nov 23;26(12):108544. doi: 10.1016/j.isci.2023.108544. eCollection 2023 Dec 15.
2
Spatial organization of the mouse retina at single cell resolution by MERFISH.
Nat Commun. 2023 Aug 15;14(1):4929. doi: 10.1038/s41467-023-40674-3.
3
Boolean implication analysis of single-cell data predicts retinal cell type markers.
BMC Bioinformatics. 2022 Sep 16;23(1):378. doi: 10.1186/s12859-022-04915-4.
4
Cell numbers, cell ratios, and developmental plasticity in the rod pathway of the mouse retina.
J Anat. 2023 Aug;243(2):204-222. doi: 10.1111/joa.13653. Epub 2022 Mar 15.
5
Interrelationships between Cellular Density, Mosaic Patterning, and Dendritic Coverage of VGluT3 Amacrine Cells.
J Neurosci. 2021 Jan 6;41(1):103-117. doi: 10.1523/JNEUROSCI.1027-20.2020. Epub 2020 Nov 18.
6
OFF bipolar cell density varies by subtype, eccentricity, and along the dorsal ventral axis in the mouse retina.
J Comp Neurol. 2021 Jun;529(8):1911-1925. doi: 10.1002/cne.25064. Epub 2020 Nov 9.
7
Using BXD mouse strains in vision research: A systems genetics approach.
Mol Vis. 2020 Mar 6;26:173-187. eCollection 2020.
8
From random to regular: Variation in the patterning of retinal mosaics.
J Comp Neurol. 2020 Sep 1;528(13):2135-2160. doi: 10.1002/cne.24880. Epub 2020 Mar 3.
9
Site-specific abnormalities in the visual system of a mouse model of CDKL5 deficiency disorder.
Hum Mol Genet. 2019 Sep 1;28(17):2851-2861. doi: 10.1093/hmg/ddz102.
10
Ccl5 Mediates Proper Wiring of Feedforward and Lateral Inhibition Pathways in the Inner Retina.
Front Neurosci. 2018 Oct 12;12:702. doi: 10.3389/fnins.2018.00702. eCollection 2018.

本文引用的文献

1
Genomic Control of Retinal Cell Number: Challenges, Protocol, and Results.
Methods Mol Biol. 2017;1488:365-390. doi: 10.1007/978-1-4939-6427-7_17.
2
The functional diversity of retinal ganglion cells in the mouse.
Nature. 2016 Jan 21;529(7586):345-50. doi: 10.1038/nature16468. Epub 2016 Jan 6.
4
Beyond Molecular Codes: Simple Rules to Wire Complex Brains.
Cell. 2015 Oct 8;163(2):285-91. doi: 10.1016/j.cell.2015.09.031.
5
Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.
Cell. 2015 May 21;161(5):1202-1214. doi: 10.1016/j.cell.2015.05.002.
6
Variability in Human Cone Topography Assessed by Adaptive Optics Scanning Laser Ophthalmoscopy.
Am J Ophthalmol. 2015 Aug;160(2):290-300.e1. doi: 10.1016/j.ajo.2015.04.034. Epub 2015 Apr 30.
7
The types of retinal ganglion cells: current status and implications for neuronal classification.
Annu Rev Neurosci. 2015 Jul 8;38:221-46. doi: 10.1146/annurev-neuro-071714-034120. Epub 2015 Apr 9.
8
Connexin50 couples axon terminals of mouse horizontal cells by homotypic gap junctions.
J Comp Neurol. 2015 Oct 1;523(14):2062-81. doi: 10.1002/cne.23779. Epub 2015 May 14.
9
The patterning of retinal horizontal cells: normalizing the regularity index enhances the detection of genomic linkage.
Front Neuroanat. 2014 Oct 21;8:113. doi: 10.3389/fnana.2014.00113. eCollection 2014.
10
Programmed cell death of retinal cone bipolar cells is independent of afferent or target control.
Dev Biol. 2014 Oct 15;394(2):191-6. doi: 10.1016/j.ydbio.2014.08.018. Epub 2014 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验