Suppr超能文献

优化CRISPR-Cas9基因组编辑特异性的方法。

Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity.

作者信息

Tycko Josh, Myer Vic E, Hsu Patrick D

机构信息

Editas Medicine, 300 Third Street, Cambridge, MA 02142, USA.

Editas Medicine, 300 Third Street, Cambridge, MA 02142, USA; Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.

出版信息

Mol Cell. 2016 Aug 4;63(3):355-70. doi: 10.1016/j.molcel.2016.07.004.

Abstract

Advances in the development of delivery, repair, and specificity strategies for the CRISPR-Cas9 genome engineering toolbox are helping researchers understand gene function with unprecedented precision and sensitivity. CRISPR-Cas9 also holds enormous therapeutic potential for the treatment of genetic disorders by directly correcting disease-causing mutations. Although the Cas9 protein has been shown to bind and cleave DNA at off-target sites, the field of Cas9 specificity is rapidly progressing, with marked improvements in guide RNA selection, protein and guide engineering, novel enzymes, and off-target detection methods. We review important challenges and breakthroughs in the field as a comprehensive practical guide to interested users of genome editing technologies, highlighting key tools and strategies for optimizing specificity. The genome editing community should now strive to standardize such methods for measuring and reporting off-target activity, while keeping in mind that the goal for specificity should be continued improvement and vigilance.

摘要

CRISPR-Cas9基因组工程工具箱在递送、修复和特异性策略方面的进展,正帮助研究人员以前所未有的精度和灵敏度来理解基因功能。CRISPR-Cas9通过直接纠正致病突变,在治疗遗传疾病方面也具有巨大的治疗潜力。尽管已证明Cas9蛋白会在脱靶位点结合并切割DNA,但Cas9特异性领域正在迅速发展,在引导RNA选择、蛋白质和引导工程、新型酶以及脱靶检测方法方面都有显著改进。我们综述该领域的重要挑战和突破,为基因组编辑技术的相关用户提供一份全面实用指南,重点介绍优化特异性的关键工具和策略。基因组编辑领域现在应努力规范此类测量和报告脱靶活性的方法,同时牢记特异性的目标应是持续改进并保持警惕。

相似文献

1
Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity.
Mol Cell. 2016 Aug 4;63(3):355-70. doi: 10.1016/j.molcel.2016.07.004.
2
[CRISPR/CAS9, the King of Genome Editing Tools].
Mol Biol (Mosk). 2017 Jul-Aug;51(4):582-594. doi: 10.7868/S0026898417040036.
3
Optimization of genome editing through CRISPR-Cas9 engineering.
Bioengineered. 2016 Apr;7(3):166-74. doi: 10.1080/21655979.2016.1189039.
5
Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans.
Methods. 2017 May 15;121-122:86-93. doi: 10.1016/j.ymeth.2017.03.023. Epub 2017 Apr 7.
6
Engineering the Delivery System for CRISPR-Based Genome Editing.
Trends Biotechnol. 2018 Feb;36(2):173-185. doi: 10.1016/j.tibtech.2017.11.006. Epub 2018 Jan 2.
7
Conditional Control of CRISPR/Cas9 Function.
Angew Chem Int Ed Engl. 2016 Apr 25;55(18):5394-9. doi: 10.1002/anie.201511441. Epub 2016 Mar 21.
8
Genome editing via delivery of Cas9 ribonucleoprotein.
Methods. 2017 May 15;121-122:9-15. doi: 10.1016/j.ymeth.2017.04.003. Epub 2017 Apr 12.
9
Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila.
Genetics. 2014 Apr;196(4):961-71. doi: 10.1534/genetics.113.160713. Epub 2014 Jan 29.
10
Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
Mol Cell. 2017 Jul 6;67(1):117-127.e5. doi: 10.1016/j.molcel.2017.05.024. Epub 2017 Jun 9.

引用本文的文献

1
CAMKKβ supports growth and viability of epithelial ovarian cancer in vitro and in vivo.
Sci Rep. 2025 Jul 17;15(1):25913. doi: 10.1038/s41598-025-11584-9.
3
Predicting adenine base editing efficiencies in different cellular contexts by deep learning.
Genome Biol. 2025 May 8;26(1):115. doi: 10.1186/s13059-025-03586-7.
4
MED12 dysregulation: insights into cancer and therapeutic resistance.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Mar 19. doi: 10.1007/s00210-025-04006-0.
6
Cell-Penetrating Peptides and CRISPR-Cas9: A Combined Strategy for Human Genetic Disease Therapy.
Hum Gene Ther. 2024 Oct;35(19-20):781-797. doi: 10.1089/hum.2024.020.
7
Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities.
Methods Mol Biol. 2024;2842:23-55. doi: 10.1007/978-1-0716-4051-7_2.
8
Conformational dynamics of CasX (Cas12e) in mediating DNA cleavage revealed by single-molecule FRET.
Nucleic Acids Res. 2024 Aug 27;52(15):9014-9027. doi: 10.1093/nar/gkae604.
9
OliTag-seq enhances in cellulo detection of CRISPR-Cas9 off-targets.
Commun Biol. 2024 Jun 6;7(1):696. doi: 10.1038/s42003-024-06360-w.
10
Engineering CRISPR/Cas9 therapeutics for cancer precision medicine.
Front Genet. 2024 Apr 25;15:1309175. doi: 10.3389/fgene.2024.1309175. eCollection 2024.

本文引用的文献

1
Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells.
Nat Biotechnol. 2016 Aug;34(8):869-74. doi: 10.1038/nbt.3620. Epub 2016 Jun 27.
2
Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells.
Nat Biotechnol. 2016 Aug;34(8):863-8. doi: 10.1038/nbt.3609. Epub 2016 Jun 6.
3
C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector.
Science. 2016 Aug 5;353(6299):aaf5573. doi: 10.1126/science.aaf5573. Epub 2016 Jun 2.
4
Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA.
Cell. 2016 May 5;165(4):949-62. doi: 10.1016/j.cell.2016.04.003. Epub 2016 Apr 21.
5
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
Nature. 2016 Apr 28;532(7600):517-21. doi: 10.1038/nature17945. Epub 2016 Apr 20.
6
Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage.
Science. 2016 Feb 19;351(6275):867-71. doi: 10.1126/science.aad8282. Epub 2016 Jan 14.
7
8
Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq.
Genome Res. 2016 Mar;26(3):406-15. doi: 10.1101/gr.199588.115. Epub 2016 Jan 19.
9
The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells.
Mol Ther. 2016 Mar;24(3):645-54. doi: 10.1038/mt.2016.8. Epub 2016 Jan 19.
10
Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9.
Nat Biotechnol. 2016 Feb;34(2):184-191. doi: 10.1038/nbt.3437. Epub 2016 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验