Suppr超能文献

小型神经回路中动力学的复杂性

The Complexity of Dynamics in Small Neural Circuits.

作者信息

Fasoli Diego, Cattani Anna, Panzeri Stefano

机构信息

Laboratory of Neural Computation, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy.

出版信息

PLoS Comput Biol. 2016 Aug 5;12(8):e1004992. doi: 10.1371/journal.pcbi.1004992. eCollection 2016 Aug.

Abstract

Mean-field approximations are a powerful tool for studying large neural networks. However, they do not describe well the behavior of networks composed of a small number of neurons. In this case, major differences between the mean-field approximation and the real behavior of the network can arise. Yet, many interesting problems in neuroscience involve the study of mesoscopic networks composed of a few tens of neurons. Nonetheless, mathematical methods that correctly describe networks of small size are still rare, and this prevents us to make progress in understanding neural dynamics at these intermediate scales. Here we develop a novel systematic analysis of the dynamics of arbitrarily small networks composed of homogeneous populations of excitatory and inhibitory firing-rate neurons. We study the local bifurcations of their neural activity with an approach that is largely analytically tractable, and we numerically determine the global bifurcations. We find that for strong inhibition these networks give rise to very complex dynamics, caused by the formation of multiple branching solutions of the neural dynamics equations that emerge through spontaneous symmetry-breaking. This qualitative change of the neural dynamics is a finite-size effect of the network, that reveals qualitative and previously unexplored differences between mesoscopic cortical circuits and their mean-field approximation. The most important consequence of spontaneous symmetry-breaking is the ability of mesoscopic networks to regulate their degree of functional heterogeneity, which is thought to help reducing the detrimental effect of noise correlations on cortical information processing.

摘要

平均场近似是研究大型神经网络的有力工具。然而,它们并不能很好地描述由少量神经元组成的网络的行为。在这种情况下,平均场近似与网络实际行为之间可能会出现重大差异。然而,神经科学中的许多有趣问题都涉及对由几十 个神经元组成的介观网络的研究。尽管如此,能够正确描述小规模网络的数学方法仍然很少,这阻碍了我们在理解这些中间尺度的神经动力学方面取得进展。在这里,我们对由兴奋性和抑制性发放率神经元的均匀群体组成的任意小网络的动力学进行了新颖的系统分析。我们用一种在很大程度上易于解析处理的方法研究它们神经活动的局部分岔,并通过数值方法确定全局分岔。我们发现,对于强抑制,这些网络会产生非常复杂的动力学,这是由神经动力学方程通过自发对称破缺出现的多个分支解的形成所导致的。神经动力学的这种定性变化是网络的一种有限尺寸效应,它揭示了介观皮层回路与其平均场近似之间定性的和以前未被探索的差异。自发对称破缺的最重要后果是介观网络调节其功能异质性程度的能力,这被认为有助于减少噪声相关性对皮层信息处理的有害影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2178/4975407/a6d5c3dc9a95/pcbi.1004992.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验