Samsonov Sergey A, Pisabarro M Teresa
Structural Bioinformatics, BIOTEC TU Dresden, Dresden 01307, Germany.
Glycobiology. 2016 Aug;26(8):850-861. doi: 10.1093/glycob/cww055. Epub 2016 Jun 24.
Glycosaminoglycans represent a class of linear anionic periodic polysaccharides, which play a key role in a variety of biological processes in the extracellular matrix via interactions with their protein targets. Computationally, glycosaminoglycans are very challenging due to their high flexibility, periodicity and electrostatics-driven nature of the interactions with their protein counterparts. In this work, we carry out a detailed computational characterization of the interactions in protein-glycosaminoglycan complexes from the Protein Data Bank (PDB), which are split into two subsets accounting for their intrinsic nature: non-enzymatic-protein-glycosaminoglycan and enzyme-glycosaminoglycan complexes. We apply molecular dynamics to analyze the differences in these two subsets in terms of flexibility, retainment of the native interactions in the simulations, free energy components of binding and contributions of protein residue types to glycosaminoglycan binding. Furthermore, we systematically demonstrate that protein electrostatic potential calculations, previously found to be successful for glycosaminoglycan binding sites prediction for individual systems, are in general very useful for proposing protein surface regions as putative glycosaminoglycan binding sites, which can be further used for local docking calculations with these particular polysaccharides. Finally, the performance of six different docking programs (Autodock 3, Autodock Vina, MOE, eHiTS, FlexX and Glide), some of which proved to perform well for particular protein-glycosaminoglycan complexes in previous work, is evaluated on the complete protein-glycosaminoglycan data set from the PDB. This work contributes to widen our knowledge of protein-glycosaminoglycan molecular recognition and could be useful to steer a choice of the strategies to be applied in theoretical studies of these systems.
糖胺聚糖是一类线性阴离子周期性多糖,它们通过与蛋白质靶点相互作用,在细胞外基质的多种生物学过程中发挥关键作用。在计算方面,糖胺聚糖极具挑战性,因为它们具有高度的灵活性、周期性以及与蛋白质对应物相互作用的静电驱动性质。在这项工作中,我们对来自蛋白质数据库(PDB)的蛋白质 - 糖胺聚糖复合物中的相互作用进行了详细的计算表征,这些复合物根据其内在性质分为两个子集:非酶蛋白 - 糖胺聚糖和酶 - 糖胺聚糖复合物。我们应用分子动力学来分析这两个子集在灵活性、模拟中天然相互作用的保留情况、结合自由能成分以及蛋白质残基类型对糖胺聚糖结合的贡献方面的差异。此外,我们系统地证明,先前发现对单个系统的糖胺聚糖结合位点预测成功的蛋白质静电势计算,总体上对于提出蛋白质表面区域作为假定的糖胺聚糖结合位点非常有用,这些位点可进一步用于与这些特定多糖的局部对接计算。最后,我们在来自PDB的完整蛋白质 - 糖胺聚糖数据集上评估了六种不同对接程序(Autodock 3、Autodock Vina、MOE、eHiTS、FlexX和Glide)的性能,其中一些在先前的工作中已被证明对特定的蛋白质 - 糖胺聚糖复合物表现良好。这项工作有助于拓宽我们对蛋白质 - 糖胺聚糖分子识别的认识,并可能有助于指导在这些系统的理论研究中应用策略的选择。