Hosseinibarkooie Seyyedmohsen, Peters Miriam, Torres-Benito Laura, Rastetter Raphael H, Hupperich Kristina, Hoffmann Andrea, Mendoza-Ferreira Natalia, Kaczmarek Anna, Janzen Eva, Milbradt Janine, Lamkemeyer Tobias, Rigo Frank, Bennett C Frank, Guschlbauer Christoph, Büschges Ansgar, Hammerschmidt Matthias, Riessland Markus, Kye Min Jeong, Clemen Christoph S, Wirth Brunhilde
Institute of Human Genetics, University of Cologne, 50931 Cologne Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany.
Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
Am J Hum Genet. 2016 Sep 1;99(3):647-665. doi: 10.1016/j.ajhg.2016.07.014. Epub 2016 Aug 4.
Homozygous loss of SMN1 causes spinal muscular atrophy (SMA), the most common and devastating childhood genetic motor-neuron disease. The copy gene SMN2 produces only ∼10% functional SMN protein, insufficient to counteract development of SMA. In contrast, the human genetic modifier plastin 3 (PLS3), an actin-binding and -bundling protein, fully protects against SMA in SMN1-deleted individuals carrying 3-4 SMN2 copies. Here, we demonstrate that the combinatorial effect of suboptimal SMN antisense oligonucleotide treatment and PLS3 overexpression-a situation resembling the human condition in asymptomatic SMN1-deleted individuals-rescues survival (from 14 to >250 days) and motoric abilities in a severe SMA mouse model. Because PLS3 knockout in yeast impairs endocytosis, we hypothesized that disturbed endocytosis might be a key cellular mechanism underlying impaired neurotransmission and neuromuscular junction maintenance in SMA. Indeed, SMN deficit dramatically reduced endocytosis, which was restored to normal levels by PLS3 overexpression. Upon low-frequency electro-stimulation, endocytotic FM1-43 (SynaptoGreen) uptake in the presynaptic terminal of neuromuscular junctions was restored to control levels in SMA-PLS3 mice. Moreover, proteomics and biochemical analysis revealed CORO1C, another F-actin binding protein, whose direct binding to PLS3 is dependent on calcium. Similar to PLS3 overexpression, CORO1C overexpression restored fluid-phase endocytosis in SMN-knockdown cells by elevating F-actin amounts and rescued the axonal truncation and branching phenotype in Smn-depleted zebrafish. Our findings emphasize the power of genetic modifiers to unravel the cellular pathomechanisms underlying SMA and the power of combinatorial therapy based on splice correction of SMN2 and endocytosis improvement to efficiently treat SMA.
SMN1基因的纯合缺失会导致脊髓性肌萎缩症(SMA),这是最常见且严重的儿童遗传性运动神经元疾病。拷贝基因SMN2仅产生约10%的功能性SMN蛋白,不足以抵消SMA的发展。相比之下,人类遗传修饰因子丝束蛋白3(PLS3)是一种肌动蛋白结合和捆绑蛋白,在携带3 - 4个SMN2拷贝的SMN1缺失个体中能完全预防SMA。在此,我们证明了次优的SMN反义寡核苷酸治疗与PLS3过表达的组合效应——类似于无症状SMN1缺失个体的人类情况——可挽救严重SMA小鼠模型的生存期(从14天延长至>250天)并改善运动能力。由于酵母中PLS3基因敲除会损害内吞作用,我们推测内吞作用紊乱可能是SMA中神经传递受损和神经肌肉接头维持障碍的关键细胞机制。事实上,SMN缺陷显著降低了内吞作用,而PLS3过表达可将其恢复到正常水平。在低频电刺激下,SMA - PLS3小鼠神经肌肉接头突触前末端的内吞性FM1 - 43(突触绿)摄取恢复到对照水平。此外,蛋白质组学和生化分析揭示了另一种F - 肌动蛋白结合蛋白CORO1C,其与PLS3的直接结合依赖于钙。与PLS3过表达类似,CORO1C过表达通过增加F - 肌动蛋白量恢复了SMN敲低细胞中的液相内吞作用,并挽救了Smn缺失斑马鱼的轴突截断和分支表型。我们的研究结果强调了遗传修饰因子在揭示SMA潜在细胞发病机制方面的作用,以及基于SMN2剪接校正和内吞作用改善的联合疗法在有效治疗SMA方面的作用。