Schmidt Helmut, Woldman Wessel, Goodfellow Marc, Chowdhury Fahmida A, Koutroumanidis Michalis, Jewell Sharon, Richardson Mark P, Terry John R
College of Engineering, Mathematics & Physical Sciences, University of Exeter, Exeter, United Kingdom.
Wellcome Trust ISSF Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, United Kingdom.
Epilepsia. 2016 Oct;57(10):e200-e204. doi: 10.1111/epi.13481. Epub 2016 Aug 8.
Epilepsy is one of the most common serious neurologic conditions. It is characterized by the tendency to have recurrent seizures, which arise against a backdrop of apparently normal brain activity. At present, clinical diagnosis relies on the following: (1) case history, which can be unreliable; (2) observation of transient abnormal activity during electroencephalography (EEG), which may not be present during clinical evaluation; and (3) if diagnostic uncertainty occurs, undertaking prolonged monitoring in an attempt to observe EEG abnormalities, which is costly. Herein, we describe the discovery and validation of an epilepsy biomarker based on computational analysis of a short segment of resting-state (interictal) EEG. Our method utilizes a computer model of dynamic networks, where the network is inferred from the extent of synchrony between EEG channels (functional networks) and the normalized power spectrum of the clinical data. We optimize model parameters using a leave-one-out classification on a dataset comprising 30 people with idiopathic generalized epilepsy (IGE) and 38 normal controls. Applying this scheme to all 68 subjects we find 100% specificity at 56.7% sensitivity, and 100% sensitivity at 65.8% specificity. We believe this biomarker could readily provide additional support to the diagnostic process.
癫痫是最常见的严重神经系统疾病之一。其特征是有反复发作性癫痫的倾向,这些发作在看似正常的脑活动背景下出现。目前,临床诊断依赖于以下几点:(1)病史,但可能不可靠;(2)在脑电图(EEG)期间观察短暂异常活动,而在临床评估期间可能不存在这种情况;(3)如果出现诊断不确定性,则进行长时间监测以试图观察EEG异常,这成本高昂。在此,我们描述了一种基于对静息状态(发作间期)EEG短片段进行计算分析的癫痫生物标志物的发现与验证。我们的方法利用动态网络的计算机模型,其中网络是从EEG通道之间的同步程度(功能网络)和临床数据的归一化功率谱推断出来的。我们在一个包含30名特发性全身性癫痫(IGE)患者和38名正常对照的数据集上使用留一法分类来优化模型参数。将该方案应用于所有68名受试者,我们发现特异性为100%时灵敏度为56.7%,灵敏度为10 _ 0%时特异性为65.8%。我们相信这种生物标志物可以很容易地为诊断过程提供额外支持。