Sudhagar P, Asokan K, Jung June Hyuk, Lee Yong-Gun, Park Suil, Kang Yong Soo
Center for Next Generation Dye-Sensitized Solar Cells, WCU Program, Department of Energy Engineering, Hanyang University, Seoul, 133-791, South Korea.
Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110 067, India.
Nanoscale Res Lett. 2011 Dec;6(1):30. doi: 10.1007/s11671-010-9763-2. Epub 2010 Sep 16.
A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm(-2)) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm(-2)). When SHI irradiation of oxygen ions of fluence 1 × 10(13) ions/cm(2) was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs.
通过静电喷雾沉积(ESD)在氟化锡氧化物(FTO)导电基板上制备的致密二氧化钛层(约1.1μm),并用氧离子进行快速重离子束(SHI)辐照,在染料敏化太阳能电池(DSSC)中显示出光伏性能的增强。与传统旋涂层(短路电流密度Jsc = 8.9 mA/cm²)相比,当采用ESD技术制备二氧化钛阻挡层时,发现DSSC的短路电流密度(Jsc = 12.2 mA/cm²)显著增加。当对ESD二氧化钛进行通量为1×10¹³离子/cm²的氧离子SHI辐照时,发现能量转换效率提高主要是由于DSSC开路电压的增加。这种能量转换效率的提高似乎与通过增加阻挡层的致密化以及改善阻挡层与FTO基板之间的附着力来改善电子能量转移有关。附着力源于二氧化钛颗粒的瞬时局部熔化。由于电解质中存在氧化物质,来自阻挡层的电子传输增加也可能阻碍电子复合过程。这些使用ESD和SHI辐照技术的新处理方法的发现可能为提高DSSC的光伏性能提供一种新工具。