Dagne Getachew A
Department of Epidemiology & Biostatistics, College of Public Health, MDC 56, University of South Florida, Tampa, FL, 33612, U.S.A..
Stat Med. 2016 Dec 10;35(28):5302-5314. doi: 10.1002/sim.7061. Epub 2016 Aug 8.
This paper presents a new Bayesian methodology for identifying a transition period for the development of drug resistance to antiretroviral drug or therapy in HIV/AIDS studies or other related fields. Estimation of such a transition period requires an availability of longitudinal data where growth trajectories of a response variable tend to exhibit a gradual change from a declining trend to an increasing trend rather than an abrupt change. We assess this clinically important feature of the longitudinal HIV/AIDS data using the bent-cable framework within a growth mixture Tobit model. To account for heterogeneity of drug resistance among subjects, the parameters of the bent-cable growth mixture Tobit model are also allowed to differ by subgroups (subpopulations) of patients classified into latent classes on the basis of trajectories of observed viral load data with skewness and left-censoring. The proposed methods are illustrated using real data from an AIDS clinical study. Copyright © 2016 John Wiley & Sons, Ltd.
本文提出了一种新的贝叶斯方法,用于在HIV/AIDS研究或其他相关领域中确定对抗逆转录病毒药物或疗法产生耐药性的过渡时期。估计这样一个过渡时期需要有纵向数据,其中响应变量的增长轨迹倾向于呈现从下降趋势到上升趋势的逐渐变化,而不是突然变化。我们使用增长混合Tobit模型中的弯曲线框架来评估纵向HIV/AIDS数据的这一临床重要特征。为了考虑受试者之间耐药性的异质性,弯曲线增长混合Tobit模型的参数也允许根据基于具有偏度和左删失的观察到的病毒载量数据轨迹分类为潜在类别的患者亚组(亚群体)而有所不同。使用来自一项艾滋病临床研究的真实数据对所提出的方法进行了说明。版权所有© 2016约翰威立父子有限公司。