Suppr超能文献

KCNQ/Kv7通道调节剂对脊髓运动神经元兴奋性进行上调和下调时的非互惠机制

Nonreciprocal mechanisms in up- and downregulation of spinal motoneuron excitability by modulators of KCNQ/Kv7 channels.

作者信息

Lombardo Joseph, Harrington Melissa A

机构信息

Department of Biological Sciences, Delaware State University, Dover, Delaware.

Department of Biological Sciences, Delaware State University, Dover, Delaware

出版信息

J Neurophysiol. 2016 Nov 1;116(5):2114-2124. doi: 10.1152/jn.00446.2016. Epub 2016 Aug 10.

Abstract

KCNQ/K7 channels form a slow noninactivating K current, also known as the M current. They activate in the subthreshold range of membrane potentials and regulate different aspects of excitability in neurons of the central nervous system. In spinal motoneurons (MNs), KCNQ/K7 channels have been identified in the somata, axonal initial segment, and nodes of Ranvier, where they generate a slow, noninactivating, K current sensitive to both muscarinic receptor-mediated inhibition and KCNQ/K7 channel blockers. In this study, we thoroughly reevaluated the function of up- and downregulation of KCNQ/K7 channels in mouse immature spinal MNs. Using electrophysiological techniques together with specific pharmacological modulators of the activity of KCNQ/K7 channels, we show that enhancement of the activity of these channels decreases the excitability of spinal MNs in mouse neonates. This action on MNs results from a combination of hyperpolarization of the resting membrane potential, a decrease in the input resistance, and depolarization of the voltage threshold. On the other hand, the effect of inhibition of KCNQ/K7 channels suggested that these channels play a limited role in regulating basal excitability. Computer simulations confirmed that pharmacological enhancement of KCNQ/K7 channel activity decreases excitability and also suggested that the effects of inhibition of KCNQ/K7 channels on the excitability of spinal MNs do not depend on a direct effect in these neurons but likely on spinal cord synaptic partners. These results indicate that KCNQ/K7 channels have a fundamental role in the modulation of the excitability of spinal MNs acting both in these neurons and in their local presynaptic partners.

摘要

KCNQ/K7通道形成一种缓慢的非失活钾电流,也被称为M电流。它们在膜电位的阈下范围内激活,并调节中枢神经系统神经元兴奋性的不同方面。在脊髓运动神经元(MNs)中,已在胞体、轴突起始段和郎飞结中鉴定出KCNQ/K7通道,在这些部位它们产生一种缓慢的、非失活的钾电流,该电流对毒蕈碱受体介导的抑制和KCNQ/K7通道阻滞剂均敏感。在本研究中,我们全面重新评估了小鼠未成熟脊髓MNs中KCNQ/K7通道上调和下调的功能。使用电生理技术以及KCNQ/K7通道活性的特异性药理学调节剂,我们发现增强这些通道的活性会降低小鼠新生儿脊髓MNs的兴奋性。对MNs的这种作用源于静息膜电位的超极化、输入电阻的降低以及电压阈值的去极化共同作用。另一方面,抑制KCNQ/K7通道的作用表明这些通道在调节基础兴奋性方面作用有限。计算机模拟证实,药理学增强KCNQ/K7通道活性会降低兴奋性,并且还表明抑制KCNQ/K7通道对脊髓MNs兴奋性的影响并不取决于对这些神经元的直接作用,而可能取决于脊髓突触伙伴。这些结果表明,KCNQ/K7通道在调节脊髓MNs兴奋性方面具有重要作用,其作用于这些神经元及其局部突触前伙伴。

相似文献

1
Nonreciprocal mechanisms in up- and downregulation of spinal motoneuron excitability by modulators of KCNQ/Kv7 channels.
J Neurophysiol. 2016 Nov 1;116(5):2114-2124. doi: 10.1152/jn.00446.2016. Epub 2016 Aug 10.
3
Kv7/KCNQ/M-channels in rat glutamatergic hippocampal axons and their role in regulation of excitability and transmitter release.
J Physiol. 2006 Oct 1;576(Pt 1):235-56. doi: 10.1113/jphysiol.2006.111336. Epub 2006 Jul 13.
4
5
Effects of novel subtype selective M-current activators on spinal reflexes in vitro: Comparison with retigabine.
Neuropharmacology. 2016 Oct;109:131-138. doi: 10.1016/j.neuropharm.2016.05.025. Epub 2016 Jun 2.
6
The pan-Kv7 (KCNQ) Channel Opener Retigabine Inhibits Striatal Excitability by Direct Action on Striatal Neurons In Vivo.
Basic Clin Pharmacol Toxicol. 2017 Jan;120(1):46-51. doi: 10.1111/bcpt.12636. Epub 2016 Aug 23.
7
Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons.
Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7869-74. doi: 10.1073/pnas.0802805105. Epub 2008 May 30.
9
Selective inhibition of A-fiber-mediated excitatory transmission underlies the analgesic effects of KCNQ channel opening in the spinal dorsal horn.
Neuropharmacology. 2024 Aug 15;254:109994. doi: 10.1016/j.neuropharm.2024.109994. Epub 2024 May 14.

引用本文的文献

2
4
Motor control: Snake neurons speed up.
Curr Biol. 2024 Feb 5;34(3):R98-R99. doi: 10.1016/j.cub.2023.12.060.
5
Exercise-induced adaptation of neurons in the vertebrate locomotor system.
J Sport Health Sci. 2024 Mar;13(2):160-171. doi: 10.1016/j.jshs.2023.10.006. Epub 2023 Oct 31.
6
The effects of membrane potential oscillations on the excitability of rat hypoglossal motoneurons.
Front Physiol. 2022 Aug 23;13:955566. doi: 10.3389/fphys.2022.955566. eCollection 2022.
7
Locomotor Pattern and Force Generation Modulated by Ionic Channels: A Computational Study of Spinal Networks Underlying Locomotion.
Front Comput Neurosci. 2022 Apr 14;16:809599. doi: 10.3389/fncom.2022.809599. eCollection 2022.
8
Synaptic disruption and CREB-regulated transcription are restored by K channel blockers in ALS.
EMBO Mol Med. 2021 Jul 7;13(7):e13131. doi: 10.15252/emmm.202013131. Epub 2021 Jun 14.
9
KCNQ Current Contributes to Inspiratory Burst Termination in the Pre-Bötzinger Complex of Neonatal Rats .
Front Physiol. 2021 Apr 13;12:626470. doi: 10.3389/fphys.2021.626470. eCollection 2021.

本文引用的文献

1
Retigabine holds KV7 channels open and stabilizes the resting potential.
J Gen Physiol. 2016 Mar;147(3):229-41. doi: 10.1085/jgp.201511517. Epub 2016 Feb 15.
3
Developing electrical properties of postnatal mouse lumbar motoneurons.
Front Cell Neurosci. 2015 Sep 2;9:349. doi: 10.3389/fncel.2015.00349. eCollection 2015.
4
Potassium currents dynamically set the recruitment and firing properties of F-type motoneurons in neonatal mice.
J Neurophysiol. 2015 Sep;114(3):1963-73. doi: 10.1152/jn.00193.2015. Epub 2015 Aug 12.
8
Cholinergic afferent stimulation induces axonal function plasticity in adult hippocampal granule cells.
Neuron. 2015 Jan 21;85(2):346-63. doi: 10.1016/j.neuron.2014.12.030. Epub 2015 Jan 8.
9
Cholinergic mechanisms in spinal locomotion-potential target for rehabilitation approaches.
Front Neural Circuits. 2014 Nov 6;8:132. doi: 10.3389/fncir.2014.00132. eCollection 2014.
10
Presynaptic inhibition of spinal sensory feedback ensures smooth movement.
Nature. 2014 May 1;509(7498):43-8. doi: 10.1038/nature13276.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验