Drovandi C C, Cusimano N, Psaltis S, Lawson B A J, Pettitt A N, Burrage P, Burrage K
ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Queensland 4000, Australia ARC Centre of Excellence for Mathematical and Statistical Frontiers, Parkville, Victoria 3010, Australia
ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Queensland 4000, Australia ARC Centre of Excellence for Mathematical and Statistical Frontiers, Parkville, Victoria 3010, Australia.
J R Soc Interface. 2016 Aug;13(121). doi: 10.1098/rsif.2016.0214.
Between-subject and within-subject variability is ubiquitous in biology and physiology, and understanding and dealing with this is one of the biggest challenges in medicine. At the same time, it is difficult to investigate this variability by experiments alone. A recent modelling and simulation approach, known as population of models (POM), allows this exploration to take place by building a mathematical model consisting of multiple parameter sets calibrated against experimental data. However, finding such sets within a high-dimensional parameter space of complex electrophysiological models is computationally challenging. By placing the POM approach within a statistical framework, we develop a novel and efficient algorithm based on sequential Monte Carlo (SMC). We compare the SMC approach with Latin hypercube sampling (LHS), a method commonly adopted in the literature for obtaining the POM, in terms of efficiency and output variability in the presence of a drug block through an in-depth investigation via the Beeler-Reuter cardiac electrophysiological model. We show improved efficiency for SMC that produces similar responses to LHS when making out-of-sample predictions in the presence of a simulated drug block. Finally, we show the performance of our approach on a complex atrial electrophysiological model, namely the Courtemanche-Ramirez-Nattel model.
个体间和个体内的变异性在生物学和生理学中普遍存在,理解和应对这一问题是医学面临的最大挑战之一。与此同时,仅通过实验来研究这种变异性是困难的。一种最近的建模与仿真方法,即模型群体(POM),通过构建一个由针对实验数据校准的多个参数集组成的数学模型,使得这种探索得以进行。然而,在复杂电生理模型的高维参数空间中找到这样的参数集在计算上具有挑战性。通过将POM方法置于统计框架内,我们基于序贯蒙特卡罗(SMC)开发了一种新颖且高效的算法。我们通过Beeler-Reuter心脏电生理模型进行深入研究,在存在药物阻断的情况下,就效率和输出变异性方面,将SMC方法与拉丁超立方抽样(LHS)(文献中常用于获取POM的一种方法)进行比较。我们表明,在存在模拟药物阻断进行样本外预测时,SMC效率更高,且产生与LHS相似的响应。最后,我们展示了我们的方法在一个复杂的心房电生理模型,即Courtemanche-Ramirez-Nattel模型上的性能。