Suppr超能文献

用于探索心脏电生理实验中个体间变异性的抽样方法。

Sampling methods for exploring between-subject variability in cardiac electrophysiology experiments.

作者信息

Drovandi C C, Cusimano N, Psaltis S, Lawson B A J, Pettitt A N, Burrage P, Burrage K

机构信息

ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Queensland 4000, Australia ARC Centre of Excellence for Mathematical and Statistical Frontiers, Parkville, Victoria 3010, Australia

ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Queensland 4000, Australia ARC Centre of Excellence for Mathematical and Statistical Frontiers, Parkville, Victoria 3010, Australia.

出版信息

J R Soc Interface. 2016 Aug;13(121). doi: 10.1098/rsif.2016.0214.

Abstract

Between-subject and within-subject variability is ubiquitous in biology and physiology, and understanding and dealing with this is one of the biggest challenges in medicine. At the same time, it is difficult to investigate this variability by experiments alone. A recent modelling and simulation approach, known as population of models (POM), allows this exploration to take place by building a mathematical model consisting of multiple parameter sets calibrated against experimental data. However, finding such sets within a high-dimensional parameter space of complex electrophysiological models is computationally challenging. By placing the POM approach within a statistical framework, we develop a novel and efficient algorithm based on sequential Monte Carlo (SMC). We compare the SMC approach with Latin hypercube sampling (LHS), a method commonly adopted in the literature for obtaining the POM, in terms of efficiency and output variability in the presence of a drug block through an in-depth investigation via the Beeler-Reuter cardiac electrophysiological model. We show improved efficiency for SMC that produces similar responses to LHS when making out-of-sample predictions in the presence of a simulated drug block. Finally, we show the performance of our approach on a complex atrial electrophysiological model, namely the Courtemanche-Ramirez-Nattel model.

摘要

个体间和个体内的变异性在生物学和生理学中普遍存在,理解和应对这一问题是医学面临的最大挑战之一。与此同时,仅通过实验来研究这种变异性是困难的。一种最近的建模与仿真方法,即模型群体(POM),通过构建一个由针对实验数据校准的多个参数集组成的数学模型,使得这种探索得以进行。然而,在复杂电生理模型的高维参数空间中找到这样的参数集在计算上具有挑战性。通过将POM方法置于统计框架内,我们基于序贯蒙特卡罗(SMC)开发了一种新颖且高效的算法。我们通过Beeler-Reuter心脏电生理模型进行深入研究,在存在药物阻断的情况下,就效率和输出变异性方面,将SMC方法与拉丁超立方抽样(LHS)(文献中常用于获取POM的一种方法)进行比较。我们表明,在存在模拟药物阻断进行样本外预测时,SMC效率更高,且产生与LHS相似的响应。最后,我们展示了我们的方法在一个复杂的心房电生理模型,即Courtemanche-Ramirez-Nattel模型上的性能。

相似文献

3
Efficient time splitting schemes for the monodomain equation in cardiac electrophysiology.
Int J Numer Method Biomed Eng. 2023 Feb;39(2):e3666. doi: 10.1002/cnm.3666. Epub 2023 Jan 2.
4
Unlocking data sets by calibrating populations of models to data density: A study in atrial electrophysiology.
Sci Adv. 2018 Jan 10;4(1):e1701676. doi: 10.1126/sciadv.1701676. eCollection 2018 Jan.
6
Comparison of Monte Carlo simulations of cytochrome b6f with experiment using Latin hypercube sampling.
Bull Math Biol. 2011 Sep;73(9):2152-74. doi: 10.1007/s11538-010-9616-2. Epub 2011 Jan 8.
7
Programs for calibration-based Monte Carlo simulation of recharge areas.
Ground Water. 2012 May-Jun;50(3):472-6. doi: 10.1111/j.1745-6584.2011.00868.x. Epub 2011 Oct 3.
8
Inference in high-dimensional parameter space.
J Comput Biol. 2015 Nov;22(11):997-1004. doi: 10.1089/cmb.2015.0086. Epub 2015 Jul 15.
9
Generalized polynomial chaos-based uncertainty quantification and propagation in multi-scale modeling of cardiac electrophysiology.
Comput Biol Med. 2018 Nov 1;102:57-74. doi: 10.1016/j.compbiomed.2018.09.006. Epub 2018 Sep 15.
10
A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks.
PLoS One. 2017 Aug 10;12(8):e0182015. doi: 10.1371/journal.pone.0182015. eCollection 2017.

引用本文的文献

1
Novel and flexible parameter estimation methods for data-consistent inversion in mechanistic modelling.
R Soc Open Sci. 2023 Nov 15;10(11):230668. doi: 10.1098/rsos.230668. eCollection 2023 Nov.
2
Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data.
Sci Adv. 2022 Sep 23;8(38):eabm5952. doi: 10.1126/sciadv.abm5952. Epub 2022 Sep 21.
3
Cellular heterogeneity and repolarisation across the atria: an in silico study.
Med Biol Eng Comput. 2022 Nov;60(11):3153-3168. doi: 10.1007/s11517-022-02640-x. Epub 2022 Sep 15.
4
EP-PINNs: Cardiac Electrophysiology Characterisation Using Physics-Informed Neural Networks.
Front Cardiovasc Med. 2022 Feb 3;8:768419. doi: 10.3389/fcvm.2021.768419. eCollection 2021.
5
Calibration of ionic and cellular cardiac electrophysiology models.
Wiley Interdiscip Rev Syst Biol Med. 2020 Jul;12(4):e1482. doi: 10.1002/wsbm.1482. Epub 2020 Feb 21.
6
Mathematical Models of Cancer Cell Plasticity.
J Oncol. 2019 Oct 31;2019:2403483. doi: 10.1155/2019/2403483. eCollection 2019.
7
Bayesian, Likelihood-Free Modelling of Phenotypic Plasticity and Variability in Individuals and Populations.
Front Genet. 2019 Sep 20;10:727. doi: 10.3389/fgene.2019.00727. eCollection 2019.
8
From ionic to cellular variability in human atrial myocytes: an integrative computational and experimental study.
Am J Physiol Heart Circ Physiol. 2018 May 1;314(5):H895-H916. doi: 10.1152/ajpheart.00477.2017. Epub 2017 Dec 22.
9
Unlocking data sets by calibrating populations of models to data density: A study in atrial electrophysiology.
Sci Adv. 2018 Jan 10;4(1):e1701676. doi: 10.1126/sciadv.1701676. eCollection 2018 Jan.
10
Humans Vary, So Cardiac Models Should Account for That Too!
Front Physiol. 2017 Sep 21;8:700. doi: 10.3389/fphys.2017.00700. eCollection 2017.

本文引用的文献

1
Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation.
PLoS Comput Biol. 2015 Dec 7;11(12):e1004635. doi: 10.1371/journal.pcbi.1004635. eCollection 2015 Dec.
2
Bayesian Sensitivity Analysis of a Cardiac Cell Model Using a Gaussian Process Emulator.
PLoS One. 2015 Jun 26;10(6):e0130252. doi: 10.1371/journal.pone.0130252. eCollection 2015.
3
Inter-subject variability in human atrial action potential in sinus rhythm versus chronic atrial fibrillation.
PLoS One. 2014 Aug 26;9(8):e105897. doi: 10.1371/journal.pone.0105897. eCollection 2014.
4
Neuroscience. Mapping neural activation onto behavior in an entire animal.
Science. 2014 Apr 25;344(6182):372-3. doi: 10.1126/science.1253853.
6
Experimentally calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology.
Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):E2098-105. doi: 10.1073/pnas.1304382110. Epub 2013 May 20.
8
Exploiting mathematical models to illuminate electrophysiological variability between individuals.
J Physiol. 2012 Jun 1;590(11):2555-67. doi: 10.1113/jphysiol.2011.223313. Epub 2012 Apr 10.
9
Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation.
PLoS Comput Biol. 2011 May;7(5):e1002061. doi: 10.1371/journal.pcbi.1002061. Epub 2011 May 26.
10
Multiple models to capture the variability in biological neurons and networks.
Nat Neurosci. 2011 Feb;14(2):133-8. doi: 10.1038/nn.2735.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验