Suppr超能文献

用于临床PET运动校正的联合PET-MR呼吸运动模型。

Joint PET-MR respiratory motion models for clinical PET motion correction.

作者信息

Manber Richard, Thielemans Kris, Hutton Brian F, Wan Simon, McClelland Jamie, Barnes Anna, Arridge Simon, Ourselin Sébastien, Atkinson David

机构信息

Institute of Nuclear Medicine, University College London, London NW1 2BU, UK.

出版信息

Phys Med Biol. 2016 Sep 7;61(17):6515-30. doi: 10.1088/0031-9155/61/17/6515. Epub 2016 Aug 15.

Abstract

Patient motion due to respiration can lead to artefacts and blurring in positron emission tomography (PET) images, in addition to quantification errors. The integration of PET with magnetic resonance (MR) imaging in PET-MR scanners provides complementary clinical information, and allows the use of high spatial resolution and high contrast MR images to monitor and correct motion-corrupted PET data. In this paper we build on previous work to form a methodology for respiratory motion correction of PET data, and show it can improve PET image quality whilst having minimal impact on clinical PET-MR protocols. We introduce a joint PET-MR motion model, using only 1 min per PET bed position of simultaneously acquired PET and MR data to provide a respiratory motion correspondence model that captures inter-cycle and intra-cycle breathing variations. In the model setup, 2D multi-slice MR provides the dynamic imaging component, and PET data, via low spatial resolution framing and principal component analysis, provides the model surrogate. We evaluate different motion models (1D and 2D linear, and 1D and 2D polynomial) by computing model-fit and model-prediction errors on dynamic MR images on a data set of 45 patients. Finally we apply the motion model methodology to 5 clinical PET-MR oncology patient datasets. Qualitative PET reconstruction improvements and artefact reduction are assessed with visual analysis, and quantitative improvements are calculated using standardised uptake value (SUV(peak) and SUV(max)) changes in avid lesions. We demonstrate the capability of a joint PET-MR motion model to predict respiratory motion by showing significantly improved image quality of PET data acquired before the motion model data. The method can be used to incorporate motion into the reconstruction of any length of PET acquisition, with only 1 min of extra scan time, and with no external hardware required.

摘要

除了量化误差外,呼吸引起的患者运动可导致正电子发射断层扫描(PET)图像出现伪影和模糊。PET与磁共振(MR)成像在PET-MR扫描仪中的整合提供了互补的临床信息,并允许使用高空间分辨率和高对比度的MR图像来监测和校正因运动而受损的PET数据。在本文中,我们基于先前的工作构建了一种用于PET数据呼吸运动校正的方法,并表明它可以提高PET图像质量,同时对临床PET-MR协议的影响最小。我们引入了一个联合PET-MR运动模型,每个PET床位位置仅使用1分钟同时采集的PET和MR数据来提供一个呼吸运动对应模型,该模型可捕获周期间和周期内的呼吸变化。在模型设置中,二维多层MR提供动态成像组件,而PET数据通过低空间分辨率成帧和主成分分析提供模型替代物。我们通过计算45例患者数据集动态MR图像上的模型拟合和模型预测误差来评估不同的运动模型(一维和二维线性,以及一维和二维多项式)。最后,我们将运动模型方法应用于5个临床PET-MR肿瘤患者数据集。通过视觉分析评估PET重建在定性方面的改善和伪影减少情况,并使用活性病变中标准化摄取值(SUV(峰值)和SUV(最大值))的变化来计算定量改善情况。我们通过展示运动模型数据采集之前获取的PET数据的图像质量显著提高,证明了联合PET-MR运动模型预测呼吸运动的能力。该方法可用于将运动纳入任何长度PET采集的重建中,仅需额外1分钟的扫描时间,且无需外部硬件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验